Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường THPT Bình Chiểu TP HCM

Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường THPT Bình Chiểu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2022 – 2023 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán lớp 11 năm 2022 – 2023 trường THPT Bình Chiểu – TP HCM : + Một viên gạch hình vuông có cạnh là 30 cm được thiết kế như hình vẽ. Người ta dựng một cung tròn có tâm là một đỉnh của viên gạch với bán kính 30 cm, sau đó dựng thêm một cung tròn nữa như vậy nhưng có tâm là đỉnh đối diện với đỉnh trên. Em hãy tính diện tích phần giao nhau của hai cung tròn đó. + Bảng giá cước xe taxi Mai Linh loại xe Kia Morning như sau: 10 ngàn đồng cho 0,6 km đầu tiên, 13 ngàn đồng/km cho đoạn tiếp theo nếu quãng đường đi hơn 0,6 km nhưng không quá 25 km và 11 ngàn đồng/km cho đoạn tiếp theo nếu quãng đường đi trên 25 km. a. Hãy thiết lập hàm số f x biểu thị giá tiền (ngàn đồng) phải trả cho x km di chuyển. b. Vẽ đồ thị hàm số f x với 0 x 50. c. Tìm quãng đường đi được nếu số tiền xe là 371 200 đồng. + Một nhóm bạn gồm có 3 thành viên: An, Bình, Chi. Mỗi bạn học giỏi hai trong sáu môn: Toán, Văn, Anh, Lí, Hóa, Sinh. Người ta biết về các bạn trên như sau: Bạn giỏi Văn và bạn giỏi Sinh là hàng xóm của nhau. An trẻ nhất trong 3 bạn. Bạn Bình, bạn giỏi Toán và bạn giỏi Sinh thường đi cùng với nhau trên đường về nhà. Bạn giỏi Toán nhiều tuổi hơn bạn giỏi Anh. Bạn giỏi Hóa, bạn giỏi Anh và bạn An khi rảnh rỗi thường hay đi chơi bóng chuyền với một bạn thứ 4. Em hãy cho biết mỗi bạn giỏi những môn nào và giải thích.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh môn Toán 11 năm học 2016 - 2017 sở GD và ĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh cấp THPT môn Toán lớp 11 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận. Nội dung đề gồm các phần: lượng giác, xác suất, giới hạn, hình học không gian, min – max và dãy số. Đề thi có lời giải chi tiết và thang điểm.
Đề thi chọn học sinh giỏi Toán 11 năm học 2016 - 2017 sở GD và ĐT Vĩnh Phúc
Đề thi chọn học sinh giỏi Toán 11 năm học 2016 – 2017 sở GD và ĐT Vĩnh Phúc gồm 5 bài toán tự luận. Đề thi có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Cho tam giác ABC cân tại A. Gọi D là trung điểm cạnh AC và M là trung điểm cạnh BC. Đoạn thẳng AM cắt đường tròn ngoại tiếp tam giác BCD tại điểm E. Đường thẳng BD cắt đường tròn ngoại tiếp tam giác ABE tại điểm F khác B. Đường thẳng AF cắt đường thẳng BE tại I, đường thẳng CI cắt đường thẳng BD tại K. a. Chứng minh rằng DA = DF b. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ABK + Cho S là một số nguyên dương sao cho S chia hết cho tất cả các số nguyên dương từ 1 đến 2017. Xét k số nguyên dương a1, a2, … ak (không nhất thiết phân biệt) thuộc tập hợp {1, 2, … 2017} thỏa mãn a1 + a2 + … + ak >= 2S. Chứng minh rằng ta có thể chọn ra từ các số a1, a2, … ak một vài số sao cho tổng của chúng bằng S.
Đề thi KSCL học sinh giỏi Toán 11 năm học 2016 - 2017 cụm thi THPT Yên Thành - Nghệ An
Đề thi KSCL học sinh giỏi Toán 11 năm học 2016 – 2017 cụm thi THPT Yên Thành – Nghệ An gồm 6 câu hỏi tự luận, có lời giải chi tiết.
Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 11 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là một tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC và CD. Biết góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 0 30. a) Chứng minh rằng BP AMN. b) Tính khoảng cách giữa hai đường thẳng AB và SC. + Giải phương trình sau: sin 2 2cos2 1 sin 4cos x x xx. + Cho số nguyên dương n thỏa mãn điều kiện: 32 1 2 n n C C CC n n nn. Tìm hệ số của số hạng chứa 11 x trong khai triển 3 8 3 n n n x x với x ≠ 0.