Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 năm 2019 sở GDĐT TP Hồ Chí Minh

giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh, kỳ thi vừa được diễn ra vào sáng nay (thứ Ba ngày 05 tháng 03 năm 2019), đề thi được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài thi Toán là 120 phút (không kể thời gian giám thị coi thi phát đề). Thông qua kỳ thi chọn HSG Toán 12 này, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh (TP. HCM) sẽ tuyển chọn được các em học sinh khối 12 giỏi môn Toán đang sinh sống và học tập trên địa bàn thành phố HCM, qua đó thành lập đội tuyển HSG Toán 12 tham dự kỳ thi HSG Toán THPT cấp Quốc gia năm 2019, ngoài ra, các em đạt giải trong kỳ thi lần này còn được tuyên dương, khen thưởng để làm tấm gương học tập cho các em học sinh khác. [ads] Trích dẫn đề thi học sinh giỏi Toán 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh : + Cho hàm số y = (x^2 – 1)^2 có đồ thị (C). Xét điểm M di chuyển trên (C) và có hoành độ m thuộc (-1;1). Tiếp tuyến của (C) ở M cắt (C) tại hai điểm A, B phân biệt và khác M. Tìm giá trị lớn nhất của từng độ trung điểm I của đoạn thẳng AB. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác vuông cân ở A với BC = 2a và hình chiếu của A’ lên mặt phẳng (ABC) trùng với trung điểm BC. Biết rằng diện tích của tứ giác BCC’B’ bằng 6a^2. a) Tính theo a thể tích của hình lăng trụ đã cho. b) Tính theo a thể tích của hình trụ nhỏ nhất có hai đáy lần lượt nằm trên hai mặt phẳng (ABC), (A’B’C’) và chứa toàn bộ lăng trụ đã cho bên trong. + Cho các số thực a, b, c < (1;+∞) thỏa mãn a^10 ≤ b và log_a b + 2log_b c + 5log_c a = 12. Tìm giá trị nhỏ nhất của biểu thức P = 2log_a c + 5log_b c + 10log_b a.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bình Thuận
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Cho tam giác ABC nội tiếp đường tròn (O) với AB AC. Trung tuyến xuất phát từ đỉnh A và đường phân giác trong của góc A cắt BC lần lượt tại M và N. Đường thẳng qua N và vuông góc với AN cắt đường thẳng AB, AM lần lượt tại P và Q; đường thẳng qua P và vuông góc với AB cắt đường thẳng AN tại R. Chứng minh QR vuông góc với BC. + Tìm hiểu kết quả học tập ở một lớp học người ta thấy: Hơn 7 10 số học sinh đạt điểm giỏi ở môn Toán cũng đồng thời đạt điểm giỏi ở môn Ngữ văn. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Ngữ văn cũng đồng thời đạt điểm giỏi ở môn Lịch sử. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Lịch sử cũng đồng thời đạt điểm giỏi ở môn Tiếng Anh. Hơn 7 10 số học sinh đạt điểm giỏi ở môn Tiếng Anh cũng đồng thời đạt điểm giỏi ở môn Toán. Chứng minh trong lớp có ít nhất một học sinh đạt điểm giỏi ở cả bốn môn Toán, Ngữ văn, Lịch sử, Tiếng Anh. + Cho hàm số 3 2 f x m x m x x 1 1 3 6 5 và 2 0 max 1 f x f với m là tham số thực. Tìm giá trị nhỏ nhất của hàm số f x trên đoạn −2 0.
Đề chọn đội tuyển HSG môn Toán năm 2022 2023 sở GD ĐT Đắk Nông
Nội dung Đề chọn đội tuyển HSG môn Toán năm 2022 2023 sở GD ĐT Đắk Nông Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông. Trích dẫn Đề chọn đội tuyển HSG môn Toán năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Cho phương trình ax3 + 27×2 + 12x + 2022 = 0 có 3 nghiệm thực phân biệt. Hỏi phương trình sau có bao nhiêu nghiệm thực: 4 (ax3 + 27×2 + 12x + 2022)(3ax + 27) = (3ax2 + 54x + 12)2 với a khác 0. + Cho hai đường tròn (O1) và (O2) tiếp xúc trong tại M (đường tròn (O2) nằm trong). Hai điểm P và Q thuộc đường tròn (O2), qua P kẻ tiếp tuyến với (O2) cắt (O1) tại B và D, qua Q kẻ tiếp tuyến với (O2) cắt (O1) tại A và C. Chứng minh rằng tâm đường tròn nội tiếp các tam giác ACD, BCD nằm trên PQ. + Cho tam giác ABC, trên trung tuyến AD lấy điểm I cố định. Đường thẳng d đi qua I lần lượt cắt cạnh AB, AC tại M, N. Tìm vị trí của đường thẳng d để diện tích tam giác AMN đạt giá trị nhỏ nhất.
Đề học sinh giỏi tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Nam (đợt 1)
Nội dung Đề học sinh giỏi tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Nam (đợt 1) Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam (đợt 1); kỳ thi được diễn ra vào ngày 07 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Nam (đợt 1) : + Cho đường tròn (O) và hai điểm A, B cố định nằm trên đường tròn (O) sao cho ba điểm O, A, B không thẳng hàng. Xét một điểm C trên đường tròn (O) sao cho tam giác ABC không cân tại C. Gọi (O1) là đường tròn đi qua A và tiếp xúc với BC tại C; (O2) là đường tròn đi qua B và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai là D (D khác C). a) Tiếp tuyến của đường tròn (O) tại C cắt đường thẳng OD tại S. Chứng minh OA là tiếp tuyến của đường tròn ngoại tiếp tam giác ADS. b) Chứng minh đường thẳng CD luôn đi qua một điểm cố định khi điểm C di động trên đường tròn (O) (tam giác ABC không cân tại C). + Cho tập hợp X có 2023 phần tử. Hỏi có tất cả bao nhiêu cách chọn hai tập hợp con khác nhau của X sao cho giao của hai tập hợp này là một tập hợp có đúng một phần tử? + Tìm tất cả các cặp số nguyên tố p và q thỏa mãn 2^p + 2^q chia hết cho p.q.