Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra định kỳ lớp 11 môn Toán lần 1 năm 2018 2019 sở GD và ĐT Bắc Ninh

Nội dung Đề kiểm tra định kỳ lớp 11 môn Toán lần 1 năm 2018 2019 sở GD và ĐT Bắc Ninh Bản PDF Đề kiểm tra định kỳ Toán lớp 11 lần 1 năm 2018 – 2019 sở GD và ĐT Bắc Ninh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề), đề nhằm đánh giá tổng quát lại các nội dung kiến thức Toán lớp 11 mà học sinh đã học trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra định kỳ Toán lớp 11 lần 1 năm 2018 – 2019 sở GD và ĐT Bắc Ninh : + Một hộp chứa 5 quả cầu màu xanh, 6 quả cầu màu đỏ. Lấy ngẫu nhiên cùng lúc ra 5 quả cầu từ hộp đó. a. Hỏi có bao nhiêu cách lấy ra như vậy. b. Tính xác suất sao cho 5 quả cầu được lấy ra có 3 quả cầu màu xanh và 2 quả cầu màu đỏ. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi O là giao điểm của AC và BD. Trên cạnh AB lấy điểm M sao cho M không trùng với điểm A và B, trên cạnh CD lấy điểm N sao cho N không trùng với điểm C và D. Mặt phẳng (a) là mặt phẳng đi qua MN và song song với SA. a. Tìm giao tuyến của (SAC) và (SBD). b. Tìm giao điểm F của SB với (a). c. Xác định thiết diện của hình chóp với (a). Tìm điều kiện của MN để thiết diện là hình thang.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 11 năm học 2016 - 2017 trường THPT Hồng Đức - Đăk Lăk
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường THPT Hồng Đức – Đăk Lăk gồm 50 câu hỏi trắc nghiệm khách quan. Trích một số câu trong đề thi: 1. Phương trình cos2x = 1/2 có số nghiệm thuộc khoảng (0;π) là? 2. Có 2 hộp bút chì màu. Hộp thứ nhất có có 5 bút chì màu đỏ và 7 bút chì màu xanh. Hộp thứ hai có có 8 bút chì màu đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác suất để có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh là: 3. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1;6); B(-1; -4). Gọi C, D lần lượt là ảnh của A và B qua phép tịnh tiến theo vectơ v = (1;5) Tìm khẳng định đúng trong các khẳng định sau: A. ABCD là hình thang B. ABCD là hình bình hành C. ABDC là hình bình hành D. Bốn điểm A, B, C, D thẳng hàng
Đề thi HK1 Toán 11 cơ bản năm học 2016 - 2017 trường Vinh Lộc - TT Huế
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường Vinh Lộc – Thừa Thiên Huế gồm 4 mã đề, mỗi đề gồm 40 câu hỏi trắc nghiệm và 2 câu hỏi tự luận. Đề thi dành cho học sinh theo chương trình chuẩn. Trích một số câu trong đề thi: 1. Trong bài thi vấn đáp, giáo viên soạn sẵn 10 câu hỏi trong đó có 7 câu hỏi mức độ dễ và 3 câu hỏi mức độ khó. Xác suất một học sinh chọn ngẫu nhiên 3 câu hỏi mà có ít nhất một câu hỏi khó bằng? 2. Cho tứ diện ABCD sao cho BCD và ACD là các tam giác cân lần lượt tại B và A; AB = AC = CD = a. M là một điểm trên cạnh AC với AM = x (0 < x < a). (α ) là mặt phẳng qua M song song với AB và CD. Mặt phẳng (α ) cắt tứ diện ABCD theo thiết diện là hình chữ nhật MNPQ (N, P, Q lần lượt nằm trên các cạnh BC, BD, AD). Giá trị của x theo a để diện tích thiết diện MNPQ lớn nhất là: 3. Giải phương trình: sin2x – cos2x = 3sinx + cosx − 2
Đề thi HK1 Toán 11 năm học 2016 - 2017 trường chuyên Hạ Long - Quảng Ninh
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường chuyên Hạ Long – Quảng Ninh gồm 50 câu hỏi trắc nghiệm khách quan. Đề thi dành cho học sinh theo chương trình chuẩn. Trích một số bài toán trong đề thi: + Cho 6 chữ số 2;3;4;5;6;7. Từ các chữ số trên có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G1; G2 lần lượt là trọng tâm của tam giác ABC và SBC. Trong các mệnh đề sau, mệnh đề nào SAI? A. G1G2 // (SAD) B. G1G2 và SA không có điểm chung C. G1G2 //(SAB) D. G1G2 và SA là hai đường thẳng chéo nhau + Trong một bài thi trắc nghiệm khách quan có 10 câu. Mỗi câu có 4 phương án trả lời, trong đó chỉ có một câu trả lời đúng. Một học sinh không học bài nên làm bài bằng cách chọn ngẫu nhiên một phương án trả lời. Tính xác suất để học sinh đó trả lời đúng từ 9 câu trở lên.
Đề thi HK1 Toán 11 năm học 2016 - 2017 trường Nguyễn Thị Minh Khai - TP.HCM
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường Nguyễn Thị Minh Khai – TP.HCM gồm 6 câu hỏi tự luận, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Lớp 11A có 15 học sinh nam và 25 học sinh nữ. Lớp 11B có 12 học sinh nam và 18 học sinh nữ. Trường chọn ngẫu nhiên từ mỗi lớp ra 2 học sinh ñể tham gia vào đội nhảy cổ động. Gọi A là biến cố “Trong 4 học sinh ñược chọn có 2 nam và 2 nữ”. Hãy tính xác suất của biến cố A? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung ñiểm của SC và G là trọng tâm tam giác ABC. a/ Tìm giao điểm I của AM và mặt phẳng (SBD). Chứng minh I là trọng tâm tam giác SBD. b/ Chứng minh IG song song với mặt phẳng (SAB). c/ Mặt phẳng (P) chứa AM và song song với BD cắt SB, SD lần lượt tại hai điểm E và F. Tìm thiết diện của mặt phẳng (P) và hình chóp S.ABCD. d/ Gọi K là giao điểm của ME và CD, J là giao điểm của MF và CD. Chứng minh ba điểm K, A, J nằm trên một đường thẳng song song với EF. Tính tỉ số EF/KJ