Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Hậu Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hậu Giang; kỳ thi được diễn ra vào thứ Tư ngày 01 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Hậu Giang : + Cho đa thức f(x) = x4 − 3×3 + mx + n với m và n là các số thực. a) Phân tích đa thức P(x) = x2 – 4x + 3 thành nhân tử. b) Tìm m và n biết rằng f(x) chia hết cho P(x). + Trong mặt phẳng Oxy, cho hàm số y = 2mx + m + 2 (với m là tham số thực) có đồ thị là đường thẳng d và hàm số y = -x2 có đồ thị là parabol (P). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn x1 < −l < x2. + Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm N khác C sao cho NC < AN. Vẽ đường tròn (O) có tâm O và dường kính NC, đường tròn (O) cắt BC tại E (với E khác C) và cắt đường thẳng BN tại D (với D khác N). 1) Chứng minh tứ giác ABCD nội tiếp. 2) Chứng minh ABN = AEN và NE là tia phân giác của AED. 3) Giả sử EN cắt CD tại F. Chứng minh ba điểm A, B và F thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG huyện Toán 9 năm 2018 - 2019 phòng GDĐT Thạch Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2018 – 2019 phòng Giáo dục và Đào tạo Thạch Hà, tỉnh Hà Tĩnh, đề thi gồm 01 trang được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian học sinh làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG huyện Toán 9 năm 2018 – 2019 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Qua điểm O nằm trong tam giác ABC ta vẽ 3 đường thẳng song song với 3 cạnh tam giác. Đường thẳng song song với cạnh AB cắt cạnh AC, BC lần lượt tại E và D; đường thẳng song song với cạnh BC cắt cạnh AB và AC lần lượt tại M và N; đường thẳng song song với cạnh AC cắt cạnh AB và BC lần lượt tại F và H. Biết diện tích các tam giác ODH, ONE, OMF lần lượt là a^2, b^2, c^2. a) Tính diện tích S của tam giác ABC theo a, b, c. b) Chứng minh S ≤ 3(a^2 + b^2 + c^2). [ads] + Cho đa thức f(x), tìm dư của phép chia f(x) cho (x – 1)(x + 2). Biết rằng f(x) chia cho x – 1 dư 7 và f(x) chia cho x + 2 dư 1. + Cho 3 số a, b, c khác 0 thỏa mãn a + b + c = 0. Chứng minh hằng đẳng thức: √(1/a^2 + 1/b^2 + 1/c^2) = |1/a + 1/b + 1/c|.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 - 2018 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 22 tháng 04 năm 2018. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh: a) Tứ giác BEFI là tứ giác nội tiếp đường tròn. b) AE.AF = AC2. c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định. + Cho biểu thức với x y 0 0 a) Rút gọn biểu thức A. b) Biết xy = 16. Tìm các giá trị của x, y để A có giá trị nhỏ nhất, tìm giá trị đó. + Tìm số tự nhiên n ≥ 1 sao cho tổng 1! + 2! + 3! + … + n! là một số chính phương.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2017 - 2018 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 25/03/2018.
Đề thi học sinh giỏi Toán 9 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên