Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Rút gọn biểu thức đại số và các bài toán liên quan

Nội dung Rút gọn biểu thức đại số và các bài toán liên quan Bản PDF - Nội dung bài viết Rút Gọn Biểu Thức Đại Số và Các Bài Toán Liên Quan Rút Gọn Biểu Thức Đại Số và Các Bài Toán Liên Quan Trên hành trình học tập, bài toán rút gọn biểu thức đại số và các bài toán liên quan luôn là một phần không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán. Dù có thể thấy những bài toán này không quá khó, nhưng để giải chúng một cách chính xác và nhanh chóng, học sinh cần phải nắm vững các công thức biến đổi. Cụ thể, dưới đây là 12 dạng bài tập phổ biến khi đề cập đến việc rút gọn biểu thức đại số và các bài toán liên quan: Dạng 1: Rút gọn biểu thức. Để thực hiện dạng bài này, học sinh cần nhớ điều kiện xác định của biến x để các phép toán diễn ra đúng. Dạng 2: Tính giá trị của biểu thức khi biết giá trị của biến x. Nếu x là một biểu thức, cần rút gọn trước khi tính giá trị. Dạng 3: Tìm giá trị của biến x để biểu thức đạt một giá trị nhất định. Dạng 4: Tìm giá trị của biến x để biểu thức thỏa mãn một điều kiện cho trước. Dạng 5: So sánh biểu thức với một số hoặc biểu thức khác. Dạng 6: Chứng minh một biểu thức đạt giá trị lớn nhất hoặc nhỏ nhất. Dạng 7: Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức có giá trị nguyên. Dạng 8: Tìm giá trị của biến x là số thực để biểu thức có giá trị nguyên. Dạng 9: Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Dạng 10: Tìm giá trị để biểu thức bằng hoặc nhỏ hơn giá trị tuyệt đối của nó. Dạng 11: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức. Dạng 12: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức với biến x là số tự nhiên. Việc nắm vững cách giải các dạng bài tập trên sẽ giúp học sinh tự tin và thành công khi đối mặt với các bài toán rút gọn biểu thức đại số và các bài toán liên quan trong các kỳ thi.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề góc nội tiếp
Tài liệu gồm 09 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc nội tiếp trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: Góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn gọi là góc nội tiếp. Lưu ý: Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn. 2. Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. 3. Hệ quả: Trong một đường tròn: a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau và ngược lại. b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. c) Góc nội tiếp (nhỏ hơn hoặc bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. d) Góc nội tiếp chắn nửa đường tròn là góc vuông. B. Bài tập. Dạng 1 : Chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau. Cách giải: Dùng hệ quả trong phần lý thuyết. Dạng 2 : Chứng minh hai đường thẳng vuông góc, ba điểm thẳng hàng.
Tài liệu Toán 9 chủ đề góc ở tâm và số đo cung
Tài liệu gồm 09 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc ở tâm và số đo cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Khi nào thì sđ AC + sđ BC = sđ AB. B. Bài tập. Dạng 1 : Tính số đo của góc ở tâm, của cung bị chắn. Cách giải: – Đưa về cách tính số đo một góc của tam giác, tam giác. – Để tính số đo của cung nhỏ, ta tính số đo của góc ở tâm tương ứng. – Để tính số đo của cung lớn ta lấy 3600 trừ đi số đo của cung nhỏ. – Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. – Sử dụng quan hệ giữa đường kính và dây. Dạng 2 : Chứng minh hai cung bằng nhau. Cách giải: Để chứng minh hai cung (của một đường tròn) bằng nhau ta chứng minh hai cung này có cùng một số đo.
Tài liệu Toán 9 chủ đề góc tạo bởi tia tiếp tuyến và dây cung
Tài liệu gồm 11 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc tạo bởi tia tiếp tuyến và dây cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: + Góc BAx có đỉnh nằm trên đường tròn cạnh Ax là một tia tiếp tuyến còn cạnh AB chứa dây cung AB, góc BAx gọi là góc tạo bởi tiếp tuyến và dây cung. + AnB gọi là cung bị chắn. 2. Định lý: Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn. 3. Hệ quả: Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. 4. Định lý bổ sung (Bổ đề): Nếu góc BAx (với đỉnh A nằm trên đường tròn, một cạnh chứa dây cung AB) có số đo bằng nửa số đo của cung AB căng dây đó và cung này nằm bên trong gó đó thì cạnh Ax là một tia tiếp tuyến của đường tròn. B. Bài tập. Dạng 1 : Chứng minh đẳng thức, các góc bằng nhau. Cách giải: Ta áp dụng các kiến thức sau: – Góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. – Hai góc kề đáy của tam giác cân thì bằng nhau. – Hai tam giác có hai cặp góc bằng nhau thì cặp góc còn lại cũng bằng nhau. Dạng 2 : Chứng minh hai đường thẳng song song, hai đường thẳng vuông góc, một tia là tiếp tuyến của đường tròn. Cách giải: Sử dụng hệ quả về góc tạo bởi tia tiếp tuyến và dây cung hoặc hệ quả của hia góc nội tiếp.
Tài liệu Toán 9 chủ đề liên hệ giữa cung và dây
Tài liệu gồm 07 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa cung và dây trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định lí 1. Với hai cung nhỏ trong một đường tròn hay hai đường tròn bằng nhau, ta có: a) Hai cung bằng nhau căng hai dây bằng nhau. b) Hai dây bằng nhau căng hai cung bằng nhau. 2. Định lí 2. Với hai cung nhỏ trong một đường tròn hay hai đường tròn bằng nhau, ta có: a) Cung lớn hơn căng dây lớn hơn. b) Dây lớn hơn căng cung lớn hơn. 3. Bổ sung. a) Trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau. b) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy. Trong một đường tròn, đường kính đi qua trung điểm của một dây (không đi qua tâm) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy. c) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại. B. Bài tập.