Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2023 - 2024 sở GDĐT Thái Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi được diễn ra vào ngày … tháng 12 năm 2023. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2023 – 2024 sở GD&ĐT Thái Bình : + Trên hệ trục tọa độ Oxy cho điểm hai điểm A(-1;1), B(-5;-3) và đường thẳng (d): y = ax + b. a) Tính diện tích tam giác OAB. b) Tìm a và b biết đường thẳng (d) vuông góc với đường thẳng AB và tiếp xúc với đường tròn tâm O(0;0) bán kính R = 42. + Cho tam giác ABC nhọn có AB < AC và nội tiếp đường tròn (O). Các đường cao AM, BN, CP cắt nhau tại H. Gọi K, Q lần lượt là giao điểm của NP với AH và AO, I là trung điểm của AH. 1. Chứng minh: IN2 = IK.IM. 2. Gọi E và F lần lượt là trung điểm của BN và CP. Chứng minh EF vuông góc với QM. + Cho đường thẳng (d) và đường tròn (O; R) không giao nhau. Trên đường thẳng (d) lấy điểm A. Từ điểm A kẻ tiếp tuyến AB, AC với (O; R) (B, C là tiếp điểm) và cát tuyến ADE không đi qua tâm O (D nằm giữa A và E). Gọi I là trung điểm của DE. Đường thẳng BC cắt OA và OI lần lượt tại H và K. 1. Chứng minh rằng KE là tiếp tuyến của (O; R). 2. Chứng minh rằng khi A di động trên (d) thì H di động trên một đường tròn cố định.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 9 năm 2020 - 2021 phòng GDĐT Triệu Sơn - Thanh Hóa
Ngày 08 tháng 09 năm 2020, phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chọn đội dự tuyển học sinh giỏi lớp 9 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Triệu Sơn – Thanh Hóa gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm các cặp số (x;y) nguyên thỏa mãn 2y(2x^2 + 1) – 2x(2y^2 + 1) + 1 = x^3y^3. + Tìm các số nguyên dương x, y, z thỏa mãn đồng thời hai điều kiện: (x – y√2020)/(y – z√2020) là số hữu tỉ và x^2 + y^2 + z^2 là số nguyên tố. + Cho hình vuông ABCD cố định. Một điểm I di động trên cạnh AB (I khác A và B). Tia DI cắt đường thẳng CB tại E. Đường thẳng CI cắt AE tại M. Đường thẳng BM cắt đường thẳng DE tại F. 1. Chứng minh rằng BI^2/BE^2 = AI/CE. 2. Trên tia đối của tia AB lấy điểm P sao cho AP = BE. Đường thẳng AE cắt CP tại H. Chứng minh rằng DH song song CI. 3. Tìm quỹ tích điểm F khi I di động trên cạnh AB.
Đề thi HSG Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Thanh Hóa
Thứ Ba ngày 06 tháng 10 năm 2020, phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thanh Hóa : + Tìm cặp nghiệm nguyên thỏa mãn: x^2022 = y^2022 – y^1348 – y^674 + 2. + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tam giác AEF đồng dạng với tam giác ABC. 2) Chứng minh H là giao điểm ba đường phân giác của tam giác DEF. 3) Đặt BC = a; AC = b, AB = c; S là diện tích tam giác ABC. Chứng minh rằng: a^2 + b^2 + c^2 >= 4√3S. + Cho các số thực dương thỏa mãn abc + a + c = b. Tìm giá trị lớn nhất của biểu thức P = 2/(a^2 + 1) – 2/(b^2 + 1) + 3/(c^2 + 1).
Đề thi HSG Toán 9 cấp huyện năm 2020 - 2021 phòng GDĐT Thạch Hà - Hà Tĩnh
Thứ Sáu ngày 25 tháng 09 năm 2020, phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi huyện môn Toán lớp 9 năm học 2020 – 2021. Đề thi HSG Toán 9 cấp huyện năm 2020 – 2021 phòng GD&ĐT Thạch Hà – Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2020 – 2021 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Có 3 giỏ táo; giỏ thứ nhất có 11 trái, giỏ thứ hai có 7 trái và giỏ thứ 3 có 6 trái. Nêu cách chuyển các trái táo sao cho số táo trong 3 giỏ bằng nhau. Việc chuyển táo từ giỏ này sang giỏ kia phải thỏa mãn điều kiện số táo chuyển vào giỏ đó phải đúng bằng số táo có trong giỏ đó. + Cho tam giác ABC vuông tại A có AB < AC; vẽ đường cao AH, phân giác trong AD. Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB và AC. a) Biết AB = 6 cm, AC = 8 cm. Tính AH, MN, BD. b) Gọi AE là phân giác ngoài của tam giác ABC. Chứng minh rằng: 1/AB + 1/AC = √2/AD và 1/AB – 1/AC = √2/AE. + Cho các số thực x, y, z thỏa mãn: 0 < x, y, z =< 1. Chứng minh rằng: x/(1 + y + xz) + y/(1 + z + xy) + z/(1 + x + yz) =< 3/(x + y + z).
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT Sầm Sơn - Thanh Hóa
Thứ Ba ngày 29 tháng 09 năm 2020, phòng Giáo dục và Đào tạo thành phố Sầm Sơn, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 khối THCS năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Sầm Sơn – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Sầm Sơn – Thanh Hóa : + Tìm các số nguyên x, y thỏa mãn x^4 + 2y^2 – 17x^2 – 2xy + 90 = 6y. + Cho ba số nguyên dương x, y, z. Chứng minh rằng: (x – y)^5 + (y – z)^5 + (z – x)^5 chia hết cho 5(x – y)(y – z)(z – x). + Cho hình vuông ABCD. Gọi E là một điểm thuộc cạnh BC (E khác B). Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. a) Chứng minh: 1/AE^2 + 1/AK^2 không đổi khi E thay đổi trên cạnh BC. b) Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M. Chứng minh rằng: 1/AE + 1/AK = √2/AM. c) Tìm vị trí của E để độ dài đoạn thẳng IK ngắn nhất.