Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ chia hết trên tập hợp số

Tài liệu gồm 56 trang được biên soạn bởi tác giả Trịnh Bình giới thiệu phương pháp giải và bài tập các dạng toán về quan hệ chia hết trên tập hợp số, tài liệu phù hợp với học sinh lớp 6 muốn tìm hiểu chuyên sâu và ôn thi học sinh giỏi môn Toán bậc Trung học Cơ sở. Các dạng toán được đề cập trong tài liệu chuyên đề quan hệ chia hết trên tập hợp số: Dạng toán 1 : Chứng minh tích các số nguyên liên tiếp chia hết cho một số cho trước. Đây là dạng toán cơ bản thường gặp khi chúng ta mới bắt đầu học chứng minh các bài toán chia hết. Sử dụng các tính chất cơ bản như: tích hai số nguyên liên tiếp chia hết cho 2, tích của ba số nguyên liên tiếp chia hết cho 6. Chúng ta vận dụng linh hoạt các tích chất cơ bản này để giải các bài toán chứng  minh chia hết về tích các số nguyên liên tiếp. Dạng toán 2 : Phân tích thành nhân tử. Để chứng minh A(x) chia hết cho p ta phân thích A(x) = D(x).p, còn nếu không thể đưa ra phân tích như vậy ta có thể viết p = kq. + Nếu (k;q) = 1, ta chứng minh A(x) chia hết cho k và q. + Nếu (k;q) khác 1, ta viết A(x) = B(x).C(x) rồi chứng minh B(x) chia hết cho k và C(x) chia hết cho q. Dạng toán 3 : Sử dụng phương pháp tách tổng. Để chứng minh A(x) chia hết cho p ta biết đổi A(x) thành tổng các hạng tử rồi chứng minh mỗi hạng tử chia hết cho p. Dạng toán 4 : Sử dụng hằng đẳng thức. [ads] Dạng toán 5 : Sử dụng phương pháp xét số dư. Để chứng minh A(n) chia hết cho p ta xét số n có dạng n = kp + r với r thuộc {0; 1; 2 … p – 1}. Dạng toán 6 : Sử dụng phương pháp phản chứng. Để chứng minh A(x) không chia hết cho n, ta giả sử A(x) chia hết cho n sau đó dùng lập luận để chỉ ra mâu thuẩn để chỉ ra điều giả sử là sai. Dạng toán 7 : Sử dụng phương pháp quy nạp. Để kiểm tra mệnh đề đúng với mọi số tự nhiên n ≥ p ta làm như sau: + Kiểm tra mệnh đề đúng với n = p. + Giả sử mệnh đề đúng mới n = k chứng minh mệnh đề đúng với n = k + 1. Dạng toán 8 : Sử dụng nguyên lý Dirichlet. Áp dụng nguyên lý Dirichle vào bài toán chia hết như sau: “Trong m = kn + 1 số có ít nhất n + 1 số chia hết cho k có cùng số dư”. Dạng toán 9 : Xét đồng dư. Sử dụng định nghĩa và các tính chất của đồng dư thức để giải bài toán chia hết. Dạng toán 10 : Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ. Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ để giải toán. Dạng toán 11 : Các bài toán quan hệ chia hết với đa thức. Dạng toán 12 : Tìm điều kiện biến để chia hết.

Nguồn: toanmath.com

Đọc Sách

Bí quyết giải toán số học THCS theo chủ đề
Tài liệu gồm 525 trang, được biên soạn bởi tác giả: Huỳnh Kim Linh và Nguyễn Quốc Bảo, trình bày bí quyết giải toán số học THCS theo chủ đề, một dạng toán thường gặp trong các đề thi chọn học sinh giỏi Toán 6 / 7 / 8 / 9 và đề tuyển sinh vào lớp 10 môn Toán. Phần I . CÁC CHỦ ĐỀ SỐ HỌC THCS. Chủ đề 1 . Các bài toán về ước và bội. 1. Các bài toán liên quan tới số ước của một số. 2. Tìm số nguyên n thỏa mãn điều kiện chia hết. 3. Tìm số biết ƯCLN của chúng. 4. Tìm số biết BCNN và ƯCLN. 5. Các bài toán về các số nguyên tố cùng nhau. 6. Các bài toán về phân số tối giản. 7. Tìm ƯCLN của các biểu thức. 8. Liên hệ phép chia có dư, phép chia hết, ƯCLN, BCNN. 9. Tìm ƯCLN của hai số bằng thuật toán Ơ-clit. Chủ đề 2 . Các bài toán về quan hệ chia hết. 1. Sử dụng tính chất n số tự nhiên liên tiếp có một và chỉ một số chia hết cho n. 2. Sử dụng phương pháp phân tích thành nhân tử. 3. Sử dụng phương pháp tách tổng. 4. Sử dụng hằng đẳng thức. 5. Sử dụng phương pháp xét số dư. 6. Sử dụng phương pháp phản chứng. 7. Sử dụng phương pháp quy nạp. 8. Sử dụng nguyên lý Dirichlet. 9. Xét đồng dư. 10. Tìm điều kiện của biến để biểu thức chia hết. 11. Các bài toán cấu tạo số liên quan đến tính chia hết. 12. Các bài chia hết sử dụng định lý Fermat. 13. Các bài toán chia hết liên quan đến đa thức. Chủ đề 3 . Các bài toán về số nguyên tố, hợp số. 1. Chứng minh một số là số nguyên tố hay hợp số. 2. Chứng minh các bài toán liên quan đến tính chất số nguyên tố. 3. Tìm số nguyên tố thỏa mãn điều kiện nào đó. 4. Nhận biết số nguyên tố, sự phân bố số nguyên tố. 5. Chứng minh có vô số nguyên tố có dạng ax + b với (a;b) = 1. 6. Sử dụng nguyên lý Dirich trong bài toán số nguyên tố. 7. Áp dụng định lý Fermat. Chủ đề 4 . Các bài toán về số chính phương. 1. Chứng minh một số là số chính phương hay là tổng nhiều số chính phương. 2. Chứng minh một số không phải là số chính phương. 3. Tìm điều kiện của biến để một số là số chính phương. 4. Tìm số chính phương. Chủ đề 5 . Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 1. Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 2. Sử dụng đồng dư thức trong tìm số dư. 3. Sử dụng đồng dư thức trong tìm điều kiện của biến để chia hết. 4. Sử dụng đồng dư thức trong tìm một chữ số tận cùng. 5. Sử dụng đồng dư thức trong tìm hai chữ số tận cùng. 6. Sử dụng đồng dư thức trong các bài toán về số chính phương. 7. Sử dụng đồng dư thức trong các bài toán số nguyên tố, hợp số. 8. Sử dụng đồng dư thức trong phương trình nghiệm nguyên. 9. Sử dụng các định lý. Chủ đề 6 . Phương trình nghiệm nguyên. 1. Phát hiện tính chia hết của một ẩn. 2. Phương pháp đưa về phương trình ước số. 3. Phương pháp tách ra các giá trị nguyên. 4. Phương pháp sử dụng tính chẵn, lẻ và số dư từng vế. 5. Phương pháp sử dụng bất đẳng thức. 6. Phương pháp dùng tính chất của số chính phương. 7. Phương pháp lùi vô hạn, nguyên tắc cực hạn. Chủ đề 7 . Phần nguyên trong số học. 1. Phần nguyên của một số hoặc một biểu thức. 2. Chứng minh một đẳng thức chứa phần nguyên. 3. Phương trình phần nguyên. 4. Bất phương trình phần nguyên. 5. Phần nguyên trong chứng minh một số dạng toán số học. 6. Chứng minh bất đẳng thức chứa phần nguyên. Chủ đề 8 . Nguyên lý Dirichlet trong số học. 1. Chứng minh sự tồn tại chia hết. 2. Các bài toán về tính chất phần tử trong tập hợp. 3. Bài toán liên quan đến bảng ô vuông. 4. Bài toán liên quan đến thực tế. 5. Bài toán liên quan đến sự sắp xếp. 6. Vậng dụng nguyên lý Dirichlet trong các bài toán hình học. Chủ đề 9 . Các bài toán sử dụng nguyên lý cực hạn. Chủ đề 10 . Nguyên lý bất biến trong giải toán. Phần II . HƯỚNG DẪN GIẢI – ĐÁP SỐ.
Bí quyết chứng minh bất đẳng thức - Nguyễn Quốc Bảo
Tài liệu gồm 327 trang, được biên soạn bởi tác giả Nguyễn Quốc Bảo, hướng dẫn các phương pháp chứng minh bất đẳng thức, đây là dạng toán khó, thường xuất hiện trong các đề thi chọn học sinh giỏi Toán 8 / Toán 9, đề tuyển sinh lớp 10 môn Toán. Phần I . CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC. Chủ đề 1 Phương pháp dùng định nghĩa trong chứng minh bất đẳng thức. Chủ đề 2 Phương pháp biến đổi tương đương trong chứng minh bất đẳng thức. Chủ đề 3 Phương pháp phản chứng trong chứng minh bất đẳng thức . Chủ đề 4 Phương pháp tam thức bậc hai trong chứng minh bất đẳng thức. Chủ đề 5 Sử dụng tính chất tỷ số trong chứng minh bất đẳng thức. Chủ đề 6 Phương pháp làm trội, làm giảm trong chứng minh bất đẳng thức. Chủ đề 7 Phương pháp quy nạp toán học trong chứng minh bất đẳng thức. Chủ đề 8 Chứng minh bất đẳng thức dãy số bằng bất đẳng thức cổ điển. Chủ đề 9 Sử dụng bất đẳng thức AM-GM (Cauchy). Chủ đề 10 Sử dụng bất đẳng thức Bunyakovsky. [ads] Chủ đề 11 Bất đẳng thức có biến trên một đoạn. Chủ đề 12 Kĩ thuật đồng bậc hóa trong chứng minh bất đẳng thức. Chủ đề 13 Kĩ thuật chuẩn hóa trong chứng minh bất đẳng thức. Chủ đề 14 Sử dụng đẳng thức trong chứng minh bất đẳng thức. Chủ đề 15 Sử dụng nguyên lý Dirichlet trong chứng minh bất đẳng thức. Chủ đề 16 Sắp xếp biến trong chứng minh bất đẳng thức. Chủ đề 17 Sử dụng hàm số bậc nhất trong chứng minh bất đẳng thức. Chủ đề 18 Phương pháp dồn biến trong chứng minh bất đẳng thức. Chủ đề 19 Phương pháp hình học trong chứng minh bất đẳng thức. Chủ đề 20 Phương pháp đổi biến trong chứng minh bất đẳng thức. Chủ đề 21 Cực trị biểu thức có dấu giá trị tuyệt đối. Chủ đề 22 Phương pháp hệ số bất định trong chứng minh bất đẳng thức. Phần II . TUYỂN CHỌN CÁC BÀI TOÁN BẤT ĐẲNG THỨC HAY THCS.
Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc Bảo
Tài liệu gồm 94 trang, được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, hướng dẫn phương pháp giải các dạng toán chuyên đề chứng minh đẳng thức và tính giá trị biểu thức, giúp bồi dưỡng học sinh giỏi môn Toán 8 và Toán 9, ôn thi vào lớp 10 môn Toán. Mục lục tài liệu chuyên đề chứng minh đẳng thức và tính giá trị biểu thức – Nguyễn Quốc Bảo: Chủ đề I . CHỨNG MINH ĐẲNG THỨC. Dạng 1: Sử dụng phép biến đổi thương đương. Dạng 2: Sử dụng hằng đẳng thức quen biết. Dạng 3: Sử dụng phương pháp đổi biến. Dạng 4: Sử dụng bất đẳng thức. Dạng 5: Sử dụng lượng liên hợp. Dạng 6: Chứng minh có một số bằng hằng số cho trước. Dạng 7: Sử dụng Vận dụng tính chất của dãy tỉ số bằng nhau. Bài tập vận dụng. Hướng dẫn giải. Chủ đề II . TÍNH GIÁ TRỊ BIỂU THỨC MỘT BIẾN. Dạng 1: Tính giá trị biểu thức chứa đa thức. Dạng 2: Tính giá trị biểu thức chứa căn thức. Dạng 3: Tính giá trị biểu thức có biến là nghiệm của phương trình. Bài tập vận dụng. Hướng dẫn giải. [ads] Chủ đề III . TÍNH GIÁ TRỊ BIỂU THỨC NHIỀU BIẾN CÓ ĐIỀU KIỆN. Dạng 1: Sử dụng phương pháp phân tích. Dạng 2: Sử dụng phương pháp hệ số bất định. Dạng 3: Sử dụng phương pháp hình học. Dạng 4: Sử dụng Vận dụng tính chất của dãy tỉ số bằng nhau. Bài tập vận dụng. Hướng dẫn giải. Mỗi chủ đề có ba phần: Phần 1. Kiến thức cần nhớ: Phần này tóm tắt những kiến thức cơ bản, những kiến thức bổ sung cần thiết để làm cơ sở giải các bài tập thuộc các dạng của chuyên đề. Phần 2. Một số ví dụ: Phần này đưa ra những ví dụ chọn lọc, tiêu biểu chứa đựng những kĩ năng và phương pháp luận mà chương trình đòi hỏi. Phần 3. Bài tập vận dụng: Phần này tác giả đưa ra một hệ thống các bài tập được phân loại theo các dạng toán, tăng dần độ khó cho học sinh khá giỏi. Có những bài tập được trích từ các đề thi học sinh giỏi Toán và đề vào lớp 10 chuyên Toán.
Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức - Nguyễn Tài Chung
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, hướng dẫn sử dụng nguyên lí Dirichle chứng minh bất đẳng thức, phù hợp với học sinh bồi dưỡng học sinh giỏi Toán cấp THCS và ôn thi tuyển sinh vào lớp 10 trường chuyên. Khái quát nội dung tài liệu sử dụng nguyên lí Dirichle chứng minh bất đẳng thức – Nguyễn Tài Chung: A. LÝ THUYẾT VÀ VÍ DỤ GIẢI TOÁN Nếu nhốt 3 con chim Bồ Câu vào trong 2 cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con chim Bồ Câu. Khẳng định gần như hiển nhiên này được gọi là Nguyên lý Dirichle. [ads] Bây giờ ta hình dung trên trục số, điểm 0 chia trục số thành 2 phần, hay 2 cái chuồng mà vách ngăn là số 0. Như thế với ba số a, b, c mà ta xem như là 3 con chim Bồ Câu thì sẽ có một cái chuồng chứa ít nhất hai con chim Bồ Câu, nghĩa là sẽ có hai số cùng không âm (tức là có hai con chim Bồ Câu cùng thuộc chuồng [0; +∞)) hoặc cùng không dương (tức là có hai con chim Bồ Câu cùng thuộc chuồng (−∞; 0]). Do đó ta có thể giả sử có hai số, mà ta gọi là a và b, sao cho ab ≥ 0. Như vậy, trong bài toán bất đẳng thức, khi ta đã chọn được “điểm rơi” (tức là đẳng thức của bài toán), ví dụ như đẳng thức xảy ra khi a = b = c = k thì ta có thể giả sử 2 số (a − k), (b − k) cùng không âm hoặc cùng không dương, tức là có thể giả sử (a − k)(b − k) ≥ 0. B. BÀI TẬP