Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề ôn tập thi THPTQG 2019 môn Toán sở GDĐT Vĩnh Long

Tài liệu gồm 726 trang giới thiệu 31 đề thi ôn tập kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019 của sở Giáo dục và Đào tạo tỉnh Vĩnh Long, các đề được biên soạn dựa theo 3 ma trận đề, có đáp án và lời giải chi tiết. Ma trận đề ôn tập thi THPTQG 2019 môn Toán sở GD&ĐT Vĩnh Long: HÀM SỐ VÀ CÁC VẤN ĐỀ LIÊN QUAN 1. Xét tính đơn điệu của hàm số (biết y, y’). 2. Tìm cực trị, điểm cực trị (biết đồ thị, bảng biến thiên). 3 Nhận dạng bảng biến thiên, nhận dạng hàm số. 4. GTLN và GTNN biết đồ thị, bảng biến thiên. 5 Tìm đường tiệm cận (biết y). 6. Nhận dạng 3 hàm số thường gặp (biết đồ thị, bảng biến thiên). 7. Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8. Điều kiện để hàm số có cực trị tại x0 (cụ thể). 9. Điều kiện hình học về 2 điểm cực trị (hàm bậc ba). 10. Nhận dạng hàm số chứa dấu giá trị tuyệt đối (biết đồ thị). 11. Đồ thị hàm nhất biến cắt d, thoả điều kiện hình học. 12. Bài toán thực tế, liên môn về GTLN – GTNN (max – min). HÀM SỐ LUỸ THỪA, MŨ VÀ LÔGARIT 13. Tập xác định của hàm luỹ thừa, hàm vô tỷ. 14. Thu gọn biểu thức, luỹ thừa. 15. Tìm tập xác định của hàm số mũ, hàm số lôgarít. 16. Bài toán thực tế, liên môn. 17. Dạng phương trình, bất phương trình mũ cơ bản. 18. Toán tham số về phương trình mũ. NGUYÊN HÀM TÍCH PHÂN VÀ ỨNG DỤNG 19. Công thức nguyên hàm cơ bản, mở rộng. 20. Hàm phân thức (chỉ biến đổi, không đặt). 21. Thể hiện quy tắc đổi biến (cho sẵn phép đặt t). 22. Phương pháp từng phần (với u = lôgarit). 23. Câu hỏi giải bằng định nghĩa, ý nghĩa hình học. 24. Thể tích vật thể tròn xoay y = f(x), y = g(x) … (quanh Ox). 25. Bài toán thực tế (gắn hệ trục, tìm đường cong …). [ads] SỐ PHỨC 26. Phần thực, phần ảo. 27. Câu hỏi về mối liên hệ giữa 2 nghiệm phương trình. 28. Tập hợp điểm biểu diễn là đường tròn, hình tròn 29. Max – min của môđun của số phức. KHỐI ĐA DIỆN 30. Tính chất đối xứng của khối đa diện. 31. Phân chia, lắp ghép khối đa diện. 32. Khối chóp có một cạnh bên vuông góc với đáy. 33. Sử dụng định về tỉ số thể tích. 34. Khối lăng trụ xiên (có một mặt bên vuông góc với đáy). 35. Khối hộp chữ nhật KHỐI TRÒN XOAY 36. Tính độ dài đường sinh, bán kính đáy, đường cao khối nón. 37. Tính diện tích xung quanh, diện tích toàn phần khối trụ. 38. Mặt cầu nội tiếp – ngoại tiếp đa diện. OXYZ 39. Tìm tọa độ điểm, tọa độ véctơ thỏa điều kiện cho trước. 40. Tìm tâm và bán kính, điều kiện xác định mặt cầu. 41. Phương trình mặt cầu biết tâm, tiếp xúc với mặt phẳng. 42. Phương trình mặt phẳng qua 3 điểm không thẳng hàng. 43. Phương trình đường thẳng qua 1 điểm, VTCP tìm bằng tích có hướng (cho đường thẳng + mặt phẳng). 44. Xét vị trí tương đối giữa đường thẳng và mặt phẳng. 45. Max – min trong không gian Oxyz. CÁC BÀI TOÁN VẬN DỤNG 46. Tích phân hàm ẩn phương pháp đổi biến. 47. Tích phân hàm ẩn phương pháp từng phần. 48. Max – min của môđun của số phức. 49. Max – min trong không gian Oxyz. 50. Max – min trong không gian Oxyz.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPT Quốc gia 2019 trường THPT chuyên Quang Trung - Bình Phước lần 1
Đề thi thử Toán THPT Quốc gia 2019 trường THPT chuyên Quang Trung – Bình Phước lần 1 được biên soạn nhằm đánh giá năng lực, đồng thời giúp học sinh ôn tập từng bước để chuẩn bị cho kỳ thi THPTQG 2019 môn Toán, đề gồm 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong 90 phút, nội dung đề gồm chương trình Toán 10, Toán 11 và các kiến thức Toán 12 đã học xong, đề thi thử Toán 2019 có đáp án và lời giải chi tiết. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 trường THPT chuyên Quang Trung – Bình Phước lần 1 : + Đề thi THPT QG 2019 có 5 câu vận dụng cao, mỗi câu có 4 phương án lựa chọn A, B,C, D trong đó 5 câu đều có một phương án đúng là A. Một thí sinh chọn ngẫu nhiên một phương án ở mỗi câu. Tính xác suất để học sinh đó không đúng câu nào. [ads] + Trên hệ trục tọa độ Oxy. Cho hình vuông ABCD. Điểm M thuộc cạnh CD sao cho MC = 2DM, N(0, 2019) là trung điểm của BC, K là giao điểm hai đường thẳng AM, BD. Biết đường thẳng AM có phương trình: x − 10y + 2018 = 0. Khoảng cách từ gốc tọa độ O đến đường thẳng NK bằng? + Khẳng định nào sau đây là đúng? A Hàm số y = cos x là hàm số lẻ. B Hàm số y = tan 2x − sin x là hàm số lẻ. C Hàm số y = sin x là hàm số chẵn. D Hàm số y = tan x.sin x là hàm số lẻ.
Đề thi khảo sát Toán 12 năm học 2018 - 2019 trường THPT Minh Châu - Hưng Yên
Đề thi khảo sát Toán 12 năm học 2018 – 2019 trường THPT Minh Châu – Hưng Yên mã đề 001 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, nội dung đề chứa kiến thức Toán 10, Toán 11 và Toán 12 đã học nhằm kiểm tra kiến thức định kỳ của học sinh đồng thời giúp học sinh ôn tập sớm để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019, đề thi có đáp án. Trích dẫn đề thi khảo sát Toán 12 năm học 2018 – 2019 trường THPT Minh Châu – Hưng Yên : + Cho hàm số y = f(x) có tập xác định là R và lim f(x) = y0 khi x → -∞. Tìm kết luận đúng trong các kết luận sau. A. Đồ thị hàm số có tiệm cận đứng là đường thẳng x = y0. B. Đồ thị hàm số có tiệm cận ngang là đường thẳng y = y0. C. Đồ thị hàm số không có tiệm cận. D. Đồ thị hàm số có cả tiệm cận đứng, tiệm cận ngang. [ads] + Trong mặt phẳng Oxy cho có phương trình các đường thẳng AB, AC lần lượt là 3x – y + 8 = 0 và x + y – 4 = 0. Đường tròn đi qua trung điểm các đoạn thẳng HA, HB, HC có phương trình là: x^2 + (y – 1/2)^2 = 25/4, trong đó H (a;b) là trực tâm tam giác ABC và xC < 5. Tính giá trị của biểu thức P = a + b. + Khẳng định nào sau đây đúng? A. Hình lăng trụ đứng có đáy là một đa giác đều là hình lăng trụ đều. B. Hình lăng trụ đứng là hình lăng trụ đều. C. Hình lăng trụ có đáy là một đa giác đều là hình lăng trụ đều. D. Hình lăng trụ tứ giác đều là hình lập phương.
Đề thi thử THPTQG 2019 môn Toán trường THPT Toàn Thắng - Hải Phòng lần 1
Đề thi thử THPTQG 2019 môn Toán trường THPT Toàn Thắng – Hải Phòng lần 1 mã đề 496 gồm 5 trang được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 8 điểm, phần tự luận gồm 2 câu, chiếm 2 điểm, thời gian làm bài 90 phút, với hình thức đánh giá này, giáo viên vừa kiểm tra được toàn diện kiến thức, vừa kiểm tra được khả năng trình bày lời giải của học sinh, đề thi có đáp án và lời giải chi tiết phần tự luận. Trích dẫn đề thi thử THPTQG 2019 môn Toán trường THPT Toàn Thắng – Hải Phòng lần 1 : + Một người thợ nhôm kính nhận được đơn đặt hàng làm một bể cá cảnh bằng kính dạng hình hộp chữ nhật không có nắp có thể tích 3,2 m3; tỉ số giữa chiều cao của bể cá và chiều rộng của đáy bể bằng 2 (hình dưới). Biết giá một mét vuông kính để làm thành và đáy của bể cá là 800 nghìn đồng. Hỏi người thợ đó cần tối thiểu bao nhiêu tiền để mua đủ số mét vuông kính làm bể cá theo yêu cầu (coi độ dày của kính là không đáng kể so với kích thước của bể cá). + Hãy cho biết mệnh đề nào sau đây là sai ? Hai đường thẳng vuông góc nếu: A. góc giữa hai vectơ chỉ phương của chúng là 90 độ. B. góc giữa hai đường thẳng đó là 90 độ. C. tích vô hướng giữa hai vectơ chỉ phương của chúng là bằng 0. D. góc giữa hai vectơ chỉ phương của chúng là 0 độ. [ads] + Cho hàm số y = f(x) có lim f(x) = -3 khi x → +∞ và lim f(x) = 3 khi x → -∞. Chọn mệnh đề đúng. A. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng x = 3 và x = -3. B. Đồ thị hàm số đã cho không có tiệm cận ngang. C. Đồ thị hàm số đã cho có đúng một tiệm cận ngang. D. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y = 3 và y = -3.
Đề thi tháng 9 năm 2018 môn Toán 12 trường THPT chuyên Bắc Giang
Đề thi tháng 9 năm 2018 môn Toán 12 trường THPT chuyên Bắc Giang mã đề 341 được biên soạn nhằm kiểm tra chất lượng học tập môn Toán của học sinh khối 12, đồng thời tạo điều kiện để các em rèn luyện thường xuyên hướng đến kỳ thi THPT Quốc gia năm 2019. Đề gồm 5 trang với 50 câu hỏi trắc nghiệm khách quan, nội dung đề gồm chương trình Toán 10, Toán 11 và Toán 12 theo như định hướng của Bộ GD và ĐT cho kỳ thi THPTQG năm nay. Kỳ thi được tổ chức tại trường THPT chuyên Bắc Giang (tỉnh Bắc Giang) vào ngày 23 tháng 09 năm 2018. Trích dẫn đề thi tháng 9 năm 2018 môn Toán 12 trường THPT chuyên Bắc Giang : + Cho hàm số phù hợp với bảng biến thiên sau. Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên khoảng (-∞;-1) ∪ (1;+∞) và nghịch biến trên (-1;0) ∪ (0;1). B. Hàm số đồng biến trên hai khoảng (-∞;-1), (11;+∞) và nghịch biến trên khoảng (-1;11). C. Hàm số đồng biến trên hai khoảng (-∞;-1), (1;+∞) và nghịch biến trên (-1;1). D. Hàm số đồng biến trên hai khoảng (-∞;-1), (1;+∞) và nghịch biến trên hai khoảng (-1;0), (0;1). + Khi sản xuất vỏ lon sữa bò hình trụ các nhà thiết kế đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ hộp ít nhất (diện tích toàn phần của lon nhỏ nhất). Bán kính đáy của vỏ lon là bao nhiều khi muốn thể tích của lon là 314cm^3. + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 8,4%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập làm vốn ban đầu để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm, người đó được lĩnh số tiền không ít hơn 80 triệu đồng (cả vốn ban đầu và lãi), biết rằng trong suốt thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?