Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 3 năm 2023 - 2024 phòng GDĐT Diễn Châu - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 3 năm 2023 – 2024 phòng GD&ĐT Diễn Châu – Nghệ An : + Một mảnh vườn hình chữ nhật có chiều dài lớn hơn chiều rộng 5m. Nếu tăng chiều dài 4m và tăng chiều rộng 3m thì diện tích mảnh vườn là 112m2. Tính chu vi của mảnh vườn lúc đầu. + Một cái ly có phần phía trên dạng hình nón đỉnh S có bán kính đáy bằng 3cm. Người ta rót nước vào cái ly, biết chiều cao của nước trong ly bằng 6cm và bán kính r của đường tròn đáy hình nón tạo thành khi rót nước vào ly bằng 2/3 bán kính đáy cái ly (hình bên). Tính thể tích của nước có trong ly. (Giả sử độ dày của thành ly không đáng kể; π ≈ 3,14 và kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O) đường kính AB cố định, trên đoạn OA lấy điểm I sao cho 2 3 AI OA. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN (C không trùng M, N, B). Nối AC cắt MN tại E. a) Chứng minh: Tứ giác IECB nội tiếp. b) Chứng minh: 2 AE AC AI IB AI. c) Xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang là một bài thi khá thú vị và đầy thách thức. Được chia thành 5 bài toán tự luận, với lời giải chi tiết của thầy Nguyễn Chí Dũng, đề thi đòi hỏi sự tư duy logic và kiến thức chắc chắn của thí sinh. Trích một số bài toán trong đề: + Bài toán đầu tiên yêu cầu chứng minh tứ giác AHEC nội tiếp, chứng minh hai góc ABD và DBC bằng nhau, chứng minh tam giác ABE cân và chứng minh AKEF là hình thoi. + Bài toán thứ hai liên quan đến ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận, hỏi về khoảng cách mà một người quan sát có thể nhìn thấy trên mặt biển và cách xa nhìn thấy ngọn đèn từ tàu. Đề thi này không chỉ đánh giá kiến thức của thí sinh mà còn khuyến khích sự sáng tạo, tư duy logic và khả năng giải quyết vấn đề của họ. Các bài toán đều rất thú vị và đòi hỏi sự chú ý, cẩn thận trong việc giải quyết từng bước. Với đề thi này, thí sinh cần phải tự tin, kiên nhẫn và sẵn sàng đối mặt với thách thức để có thể hoàn thành tốt. Chính vì vậy, đề thi tuyển sinh môn Toán sở GD và ĐT An Giang năm học 2017-2018 là một bài kiểm tra thực sự ý nghĩa và hữu ích đối với thí sinh.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc bao gồm 5 bài toán tự luận, với lời giải chi tiết cụ thể giúp học sinh tự tin trong việc giải quyết các bài toán phức tạp. Đề thi được ra dành cho các học sinh có khả năng toán học ưu việt, để giúp định hình và phát triển năng khiếu toán học của học sinh từ sớm.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lai Châu bao gồm 5 bài toán tự luận với lời giải chi tiết. Đây là cơ hội cho học sinh thể hiện năng lực, kiến thức và kỹ năng giải toán một cách sâu sắc. Đề thi này giúp học sinh rèn luyện tư duy logic, khả năng phân tích và giải quyết vấn đề một cách chính xác và nhạy bén.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi bao gồm 5 bài toán tự luận, với lời giải chi tiết để học sinh có thể tự kiểm tra và ôn tập kiến thức một cách hiệu quả. Dưới đây là một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy. Giả sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M, N, P, Q cùng thuộc một đường tròn. + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE. a. Chứng minh tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt, các số đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.