Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề hệ hai phương trình bậc nhất hai ẩn

Tài liệu gồm 11 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ hai phương trình bậc nhất hai ẩn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm hệ phương trình bậc nhất hai ẩn. – Hệ phương trình bậc nhất hai ẩn là hệ phương trình có dạng: ax by c ax by c. Trong đó: aba b là các số thực cho trước và 22 2 2 ab a b 0 0 và x y là ẩn. – Nếu hai phương trình (1) (2) có nghiệm chung (x y 0 0) thì (x y 0 0) gọi là nghiệm của hệ phương trình. – Nếu hai phương trình (1) (2) không có nghiệm chung thì hệ phương trình vô nghiệm. – Giải hệ phương trình là tìm tất cả các nghiệm của nó (tập nghiệm). 2. Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn. Xét hệ phương trình: ax by c d ax by c d. – Tập nghiệm của hệ phương trình bậc nhất hai ẩn được biểu diễn bởi tập hợp các điểm chung của hai đường thẳng (d ax by c) và (d ax by c). +) TH1: Nếu d cắt d’ thì hệ phương trình có một nghiệm duy nhất. +) TH2: d // d’ thì hệ phương trình vô nghiệm. +) TH3: d ≡ d’ thì hệ phương trình có vô số nghiệm. 3. Tổng quát. Xét hệ phương trình: ax by c a b c ax by c a b c. – Hệ phương trình có nghiệm duy nhất a a b b. – Hệ phương trình vô nghiệm a a b c b c. – Hệ phương trình có vô số nghiệm a a b c b c. 4. Hệ phương trình tương đương. Hai hệ phương trình được gọi là tương đương với nhau nếu chúng có cùng tập nghiệm. B. Bài tập và các dạng toán. Dạng 1 : không giải hệ phương trình dự đoán số nghiệm của hệ phương trình bậc nhất hai ẩn. Cách giải: Xét hệ phương trình: ax by c a b c ax by c a b c. – Hệ phương trình có nghiệm duy nhất a b a b. – Hệ phương trình vô nghiệm abc abc. – Hệ phương trình có vô số nghiệm abc abc. Dạng 2 : Kiểm tra một cặp số cho trước có phải là nghiệm của hệ phương trình bậc nhất hai ẩn hay không? Cách giải: Cặp số (x y 0 0) là nghiệm của hệ phương trình: ax by c a b c ax by c a b c khi và chỉ khi nó thỏa mãn cả hai phương trình của hệ. Dạng 3 : Giải hệ phương trình bằng phương pháp đồ thị. Cách giải: + Bước 1: Vẽ hai đường thẳng (d ax by c d a x b y c) trên cùng một hệ trục tọa độ. + Bước 2: Xác định nghiệm của hệ phương trình dựa vào đồ thị đã vẽ ở bước 1. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải hệ phương trình bậc nhất hai ẩn
Tài liệu gồm 41 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải hệ phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 3 – 4. A. KIẾN THỨC TRỌNG TÂM a. Phương pháp thế. + Bước 1: Từ một phương trình của hệ, ta biểu thị ẩn x theo y (hoặc y theo x). + Bước 2: Thế biểu thức tìm được của x (hoặc của y) vào phương trình còn lại để được phương trình bậc nhất một ẩn. Giải phương trình bậc nhất vừa tìm được. + Bước 3: Thay giá trị vừa tìm được của ẩn vào biểu thức tìm được trong bước thứ nhất để tìm giá trị của ẩn còn lại. b. Phương pháp cộng đại số. + Bước 1: Chọn ẩn muốn khử, thường là x (hoặc y). + Bước 2: + + Xem xét hệ số của ẩn muốn khử. + + Khi các hệ số của cùng một ẩn đối nhau thì ta cộng vế theo vế của hệ. + + Khi các hệ số của cùng một ẩn bằng nhau thì ta trừ về theo vế của hệ. + + Nếu các hệ số đó không bằng nhau thì ta nhân các vế của hai phương trình với số thích hợp (nếu cần) sao cho các hệ số của x (hoặc y) trong hai phương trình của hệ là bằng nhau hoặc đối nhau (đồng nhất hệ số). Rồi thực hiện các bước ở trên. + + Ta được một phương trình mới, trong đó ẩn muốn khử có hệ số bằng 0. + Bước 3: Giải hệ phương trình gồm một phương trình mới (một ẩn) và một phương trình đã cho. B. CÁC DẠNG TOÁN Dạng 1. Giải hệ phương trình bằng phương pháp thế. Dạng 2. Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 3. Sử dụng phương pháp đặt ẩn phụ. Dạng 4. Một số bài toán liên quan. C. BÀI TẬP TỰ LUYỆN
Chuyên đề hệ hai phương trình bậc nhất hai ẩn
Tài liệu gồm 38 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ hai phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 2. A. KIẾN THỨC TRỌNG TÂM 1. Hệ hai phương trình bậc nhất hai ẩn. 2. Minh họa hình học tập nghiệm của hệ hai phương trình bậc nhất hai ẩn. 3. Hệ phương trình tương đương. B. CÁC DẠNG BÀI MINH HỌA Dạng 1: Đoán nhận số nghiệm của hệ phương trình. Dạng 2: Giải hệ phương trình bằng phương pháp hình học. Dạng 3: Hai hệ phương trình tương đương. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề đồ thị hàm số y ax + b (a khác 0)
Tài liệu gồm 46 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đồ thị hàm số y = ax + b (a khác 0), hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 3. A. KIẾN THỨC CẦN NHỚ 1. Đồ thị hàm số bậc nhất. 2. Cách vẽ đồ thị của hàm số bậc nhất. 3. Chú ý. B. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1: Vẽ đồ thị hàm số bậc nhất. Dạng 2: Tìm tham số m để hàm số là hàm số bậc nhất, đồng biến, nghịch biến. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Dạng 4: Tìm điểm cố định của đường thẳng phụ thuộc tham số. Dạng 5: Tính chu vi và diện tích tam giác. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề đường thẳng song song và đường thẳng cắt nhau
Tài liệu gồm 25 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đường thẳng song song và đường thẳng cắt nhau, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ 1. Hệ số góc của đường thẳng y = ax + b (a khác 0). 2. Đường thẳng song song và đường thẳng cắt nhau. B. CÁC DẠNG MINH HỌA Dạng 1 : Xét vị trí tương đối của hai đường thẳng. Phương pháp giải: Cho hai đường thẳng: d: y = ax + b với a khác 0 và d’: y = a’x + b’ với a’ khác 0, khi đó ta có: 1. d và d’ song song khi và chỉ khi a = a’ và b khác b’. 2. d và d’ trùng nhau khi và chỉ khi a = a’ và b = b’. 3. d và d’ cắt nhau khi và chỉ khi a khác a’ . Đặc biệt d và d’ vuông góc với nhau khi và chỉ khi a.a’ = -1. Dạng 2 : Xác định phương trình đường thẳng. Phương pháp giải: Để xác định phương trình đường thẳng, ta thường làm như sau: Bước 1: Gọi d: y = ax + b là phương trình đường thẳng cần tìm (a và b là hằng số). Bước 2: Từ giả thiết của đề bài, tìm được a và b từ đó đi đến kết luận. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN