Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế

Nội dung Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 1 năm 2022-2023 trường THCS Nguyễn Tri Phương TT Huế Đề HSG Toán lớp 9 vòng 1 năm 2022-2023 trường THCS Nguyễn Tri Phương TT Huế Xin chào các thầy cô giáo và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến bạn đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2022-2023 của trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Trích dẫn một số câu hỏi trong đề thi: Cho bốn số nguyên dương m, n, p, q thỏa điều kiện m^3 = 2p^3, n^3 = 5q^3. Chứng minh rằng tổng m + n + p + q là một hợp số. Cho tam giác ABC có đường phân giác AD. Tính góc BAC biết AB = 4cm, AC = 5cm, BC = 6cm. Cho tam giác A'B'C' có đường phân giác A'D. Chứng minh rằng ABC đồng dạng A'B'C'. Cho đoạn thẳng AB = 4cm, trên cùng một nửa mặt phẳng có bờ AB về hai tia Ax, By vuông góc với AB. Trên Ax lấy điểm D, trên By lấy điểm C sao cho BD vuông góc AC. Gọi E là giao điểm của BD và AC, F và H lần lượt là trung điểm của EB và EC. Biết 8FH = 9AD. Tính CD. Tính giá trị nhỏ nhất của AC + BD. Đề thi năm nay đa dạng và mang tính chất bổ trợ kiến thức học tập của các em học sinh. Chúc các em ôn thi tốt và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Quảng Nam
Ngày 10 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi học sinh giỏi lớp 9 cấp tỉnh môn Toán năm học 2020 – 2021. Đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Quảng Nam : + Cho hình vuông ABCD có tâm O và cạnh bằng 6cm, điểm M nằm trên cạnh BC. a) Khi BM cm 2, hạ OK vuông góc với AM tại K. Tính độ dài đoạn thẳng OK. b) Khi điểm M thay đổi trên cạnh BC (M không trùng B và C), điểm N thay đổi trên cạnh CD sao cho 0 MAN 45, E là giao điểm của AN và BD. Chứng minh tam giác AEM vuông cân và đường thẳng MN luôn tiếp xúc với một đường tròn cố định. + Cho hai đường tròn O R và O r tiếp xúc ngoài tại AR r. Dựng lần lượt hai tiếp tuyến OB O C của hai đường tròn O r, O R sao cho hai tiếp điểm B C nằm cùng phía đối với đường thẳng OO’. Từ B vẽ đường thẳng vuông góc với OO’ cắt OC’ tại K, từ C vẽ đường thẳng vuông góc với OO’ cắt OB tại H. a) Gọi D là giao điểm của OB và OC’. Chứng minh DO BO CO DO và DA là tia phân giác của góc ODO. b) Đường thẳng AH cắt đường tròn O R tại E (E khác A). Chứng minh tứ giác OABE nội tiếp đường tròn. c) Đường thẳng AK cắt đường tròn O r tại F (F khác A), L là giao điểm của BC và EF. Chứng minh BF song song với CE và ba điểm ADL thẳng hàng. + Tìm giá trị của tham số m để phương trình 2 1 0 x x mx m có hai nghiệm phân biệt.
Đề học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Thừa Thiên Huế
Đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 04 năm 2021. Trích dẫn đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế : + Cho tam giác nhọn ABC (AB < AC) có A = 60° nội tiếp đường tròn (O;R). Hai đường cao BE, CF cắt nhau tại H. Gọi I là giao điểm hai đường thẳng EF và CB. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai là M. a) Tính độ dài cạnh BC theo R. b) Chứng minh tứ giác AMFE nội tiếp được trong một đường tròn. c) Kéo dài MH cắt đường tròn (O) tại K. Tính AB.CK + AC.BK theo R. + Cho tam giác ABC cân (AB = AC) nội tiếp đường tròn (O). M là điểm bất kỳ trên dây BC. Vẽ đường tròn (D) qua M và tiếp xúc với AB tại B; vẽ đường tròn (E) qua M và tiếp xúc với AC tại C. Gọi N là giao điểm thứ hai của hai đường tròn (D) và (E). a) Chứng minh tứ giác ABNC nội tiếp. b) Chứng minh AM.AN = AC2. c) Khi điểm M thay đổi trên BC thì trung điểm I của đoạn DE chạy trên đường nào? + Cho biểu thức: E = x2 – 3x + y2 + xy + 2025. Với giá trị nào của x, y thì E đạt giá trị nhỏ nhất? Tính giá trị nhỏ nhất đó.
Đề học sinh giỏi tỉnh Toán THCS năm 2020 - 2021 sở GDĐT Kiên Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi vòng tỉnh môn Toán cấp THCS năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 19 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi tỉnh Toán THCS năm 2020 – 2021 sở GD&ĐT Kiên Giang : + Cho ba số thực dương thỏa mãn tích của chúng bằng một và tổng của chúng luôn lớn hơn tổng nghịch đảo của chúng. Chứng minh rằng có một và chỉ một trong ba số lớn hơn một. + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh tứ giác AEMD là hình chữ nhật. b) Chứng minh rằng 2 2 2 1 1 1 AD AM AN. + Cho phương trình: 4 2 x mx 2 6 24 0 (m là tham số). Tìm giá trị của tham số m để phương trình có bốn nghiệm 1 2 3 4 x x x x phân biệt thỏa mãn: 4 4 4 4 1 2 3 4 x x x x.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2020 - 2021 sở GDĐT Hậu Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Hậu Giang; kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2021. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2020 – 2021 sở GD&ĐT Hậu Giang : + Tìm các số tự nhiên n có hai chữ số, biết rằng 2n + 1 là số chính phương. Tìm nghiệm nguyên của phương trình 2×2 + 3y2 + 4x = 19. + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = -x2. Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = −x − 2 và (P). Tìm tọa độ M trên (P) sao cho tam giác MAB cân tại M. + Cho (O;R) và hai điểm A, B cố định nằm ngoài đường tròn sao cho OA = R2. Tìm điểm M trên đường tròn sao cho tổng MA + 2MB đạt giá trị nhỏ nhất.