Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Nguyễn Tài Chung

Tài liệu gồm 96 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, tổng hợp tóm tắt lý thuyết, phương pháp giải toán và bài tập trắc nghiệm có đáp án chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit, hỗ trợ học sinh trong quá trình học tập chương trình Giải tích 12 chương 1. BÀI 1 . LŨY THỪA. Dạng 1. Rút gọn biểu thức. Dạng 2. Chứng minh đẳng thức. Dạng 3. Chứng minh bất đẳng thức. Dạng 4. Các bài tập sử dụng công thức lãi kép. Dạng 5. Một số bài tập khác. BÀI 2 . LÔGARIT. Dạng 6. Tính toán, rút gọn về lôgarit. Dạng 7. Chứng minh đẳng thức. Dạng 8. So sánh hai số ở dạng lôgarit. Bất đẳng thức chứa lôgarit. Dạng 9. Bài tập ứng dụng lôgarit thập phân. Dạng 10. Bài tập ứng dụng công thức lãi kép liên tục. Dạng 11. Biểu diễn lôgarit theo các lôgarit cho trước. BÀI 3 . HÀM SỐ MŨ, HÀM SỐ LÔGARIT VÀ HÀM SỐ LŨY THỪA. Dạng 12. Tìm tập xác định của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 13. Khảo sát và vẽ đồ thị hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 14. Chứng minh đẳng thức hàm. Dạng 15. Xét tính chẵn, lẻ của hàm số mũ, lôgarit, lũy thừa. Dạng 16. Tính giới hạn. Dạng 17. Tính đạo hàm. Dạng 18. Chứng minh đẳng thức chứa đạo hàm. Dạng 19. Chứng minh đẳng thức chứa vi phân. Dạng 20. Xét tính đơn điệu của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 21. Tìm giá trị lớn nhất, giá trị bé nhất của hàm số mũ, hàm số lôgarit. Dạng 22. Một số bất đẳng thức được chứng bằng cách khảo sát hàm số mũ, hàm số lôgarit. Dạng 23. Chứng minh bất đẳng thức bằng cách lôgarit hóa. Dạng 24. Bất đẳng thức Becnuli. Dạng 25. Dùng đạo hàm để tính giới hạn dạng 0/0: limf(x) khi x→a. BÀI 4 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ. Dạng 26. Đưa về cùng một cơ số. Dạng 27. Đặt ẩn phụ. Dạng 28. Phương pháp hàm số. Dạng 29. Phương trình dạng hiệu các hàm đơn điệu. Dạng 30. Phép đặt ẩn phụ bậc hai u = (ab)^x/(A.a^2x + B.b^2x). Dạng 31. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 32. Phương trình, bất phương trình mũ chứa tham số. Dạng 33. Phương trình đưa được về dạng tích. BÀI 5 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LÔGARIT. Dạng 34. Đưa về cùng một cơ số. Dạng 35. Phương pháp hàm số. Dạng 36. Phương trình dạng hiệu các hàm đơn điệu. Dạng 37. Phương trình loga f(x) = logb g(x) với a khác b. Dạng 38. Sử dụng công thức đổi cơ số, phương pháp logarit hóa. Dạng 39. Sử dụng công thức a logb c = c logb a. Dạng 40. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 41. Phương trình, bất phương trình lôgarit chứa tham số. BÀI 6 . HỆ MŨ VÀ LÔGARIT. Dạng 42. Một số hệ giải được bằng phương pháp thế. Dạng 43. Hệ mũ, lôgarit đối xứng loại 1, đối xứng loại 2. Dạng 44. Hệ có yếu tố đẳng cấp. Dạng 45. Một số hệ không mẫu mực. Dạng 46. Hệ có tham số. Dạng 47. Giải hệ bằng cách sử dụng tính đơn điệu của hàm số.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm logarit
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm logarit, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu logarit dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm logarit: A. KIẾN THỨC CƠ BẢN 1. Định nghĩa phép toán logarit. 2. Các tính chất của logarit. 3. Lôgarit của một tích. 4. Lôgarit của một thương. 5. Lôgarit của lũy thừa. 6. Công thức đổi cơ số logarit. B. KỸ NĂNG CƠ BẢN 1. Tính giá trị biểu thức logarit. 2. Rút gọn biểu thức logarit. 3. So sánh hai biểu thức logarit. 4. Biểu diễn giá trị logarit qua một hay nhiều giá trị logarit khác. C. KỸ NĂNG SỬ DỤNG MÁY TÍNH 1. Tính giá trị của một biểu thức chứa logarit. 2. Tính giá trị của biểu thức logarit theo các biểu thức logarit đã cho. 3. Tìm các khẳng định đúng trong các biểu thức logarit đã cho. 4. So sánh lôgarit với một số hoặc lôgarit với nhau. D. BÀI TẬP TRẮC NGHIỆM E. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm hàm số mũ và hàm số logarit
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm hàm số mũ và hàm số logarit, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu hàm số mũ và hàm số logarit dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm hàm số mũ và hàm số logarit: A. LÝ THUYẾT CẦN NẮM VỮNG I. HÀM SỐ LOGARIT 1. Định nghĩa hàm số lôgarit. 2. Đạo hàm hàm số lôgarit. 3. Khảo sát hàm số lôgarit: Tập xác định, Chiều biến thiên, Tiệm cận, Đồ thị. II. HÀM SỐ MŨ 1. Định nghĩa hàm số mũ. 2. Đạo hàm của hàm số mũ. 3. Khảo sát hàm số mũ: Tập xác định, Chiều biến thiên, Tiệm cận, Đồ thị. B. BÀI TẬP TRẮC NGHIỆM Phần 1: Bài tập mức nhận biết và thông hiểu. Phần 2: Bài tập mức độ vận dụng thấp. Phần 3: Bài tập mức vận dụng cao. C. ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT
Trắc nghiệm VD - VDC mũ - logarit - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Giải tích 12 chương 2 – hàm số lũy thừa, hàm số mũ và hàm số logarit, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề mũ và logarit. Tài liệu trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông gồm 116 trang với các bài tập trắc nghiệm mũ và logarit ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về mũ và logarit được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông: + Dạng toán 1. Lũy thừa – mũ và lôgarit, hàm số mũ và hàm số lôgarit. + Dạng toán 2. Giá trị lớn nhất và giá trị nhỏ nhất hàm số mũ và lôgarit. + Dạng toán 3. Phương trình và bất phương trình mũ. + Dạng toán 4. Phương trình và bất phương lôgarit. + Dạng toán 5. Ứng dụng mũ và logarit vào việc giải các bài toán thực tế. Xem thêm : Trắc nghiệm VD – VDC hàm số – Đặng Việt Đông
Tuyển tập các bài toán mũ và logarit hay và đặc sắc - Nguyễn Xuân Nhật
Tài liệu gồm 88 trang được biên soạn bởi tác giả Nguyễn Xuân Nhật tuyển chọn các câu hỏi và bài toán trắc nghiệm mũ và logarit hay và đặc sắc, có đáp án và lời giải chi tiết, đây là món quà của tác giả gửi đến các em học sinh lớp 12 nhân dịp Tết trung thu 2019. Tài liệu bao gồm 4 chủ đề: + Chủ đề 1. Phương trình bất phương trình mũ và logarit. + Chủ đề 2. Cực trị mũ và logarit. + Chủ đề 3. Đồ thị mũ và logarit. + Chủ đề 4. Ứng dụng mũ và logarit vào bài toán thực tế. [ads] Trích dẫn tài liệu tuyển tập các bài toán mũ và logarit hay và đặc sắc – Nguyễn Xuân Nhật: + Cho hàm số y = 1/(x – 1) + 1/(x – 2) + … + 1/(x – 2019) + 1/(x – 2020) và y = e^x – m + 1 (m tham số) có đồ thị lần lượt là (C1) và (C2). Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m thuộc [-2020;2020] để (C1) cắt (C2) tại đúng 2020 nghiệm phân biệt? + Cho các số thực a, b, c thuộc (1;+∞) thỏa mãn a^10 ≤ b và loga b + 2logb c + 5logc a = 12. Tìm giá trị nhỏ nhất của biểu thức P = 2loga c + 5logc b + 10logb a. + Vợ chồng anh A dự định lương của vợ dùng chi trả sinh hoạt phí, lương của anh A được gửi tiết kiệm hàng tháng. Biết đầu tháng này anh mới được tăng lương nhận mức lương 6 triệu đồng/tháng và cứ sau 2 năm lương của anh được tăng lên 10% so với 2 năm trước đó. Giả sử rằng dự định của vợ chồng anh được thực hiện từ đầu tháng này và lãi suất ngân hàng ổn định ở 0,5 % một tháng. Tính số tiền vợ chồng anh A tiết kiệm được sau 50 tháng.