Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm phương pháp tọa độ trong mặt phẳng có lời giải chi tiết

Tài liệu gồm 68 trang tóm tắt lý thuyết, phân dạng và tuyển chọn các câu hỏi, bài tập trắc nghiệm phương pháp tọa độ trong mặt phẳng có đáp án và lời giải chi tiết, tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. Bài 01. Phương trình đường thẳng 1. Vectơ chỉ phương của đường thẳng 2. Phương trình tham số của đường thẳng 3. Vectơ pháp tuyến của đường thẳng 4. Phương trình tổng quát của đường thẳng 5. Vị trí tương đối của hai đường thẳng 6. Góc giữa hai đường thẳng 7. Khoảng cách từ một điểm đến một đường thẳng Câu hỏi trắc nghiệm + Vấn đề 1. Vectơ chỉ phương – vectơ pháp tuyến + Vấn đề 2. Viết phương trình đường thẳng + Vấn đề 3. Vị trí tương đối của hai đường thẳng + Vấn đề 4. Góc giữa hai đường thẳng + Vấn đề 5. Khoảng cách [ads] Bài 02. Phương trình đường tròn 1. Phương trình đường tròn có tâm và bán kính cho trước 2. Nhận xét 3. Phương trình tiếp tuyến của đường tròn Câu hỏi trắc nghiệm + Vấn đề 1. Cho phương trình đường tròn, tìm tâm & bán kính + Vấn đề 2. Lập phương trình đường tròn + Vấn đề 3. Tìm tham số m để lp phương trình đường tròn + Vấn đề 4. Phương trình tiếp tuyến của đường tròn Bài 03. Phương trình đường elip 1. Định nghĩa 2. Phương trình chính tắc của elip 3. Tính chất và hình dạng của elip Câu hỏi trắc nghiệm + Vấn đề 1. Cho phương trình elip, hỏi các thông số + Vấn đề 2. Lập phương trình elip + Vấn đề 3. Câu hỏi vận dụng

Nguồn: toanmath.com

Đọc Sách

Bài tập phương trình và hệ phương trình có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 44 trang tuyển chọn và giải chi tiết các bài toán phương trình và hệ phương trình trong chương trình Đại số 10 chương 3, tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. Bài 01. Đại cương về phương trình + Vấn đề 1. Điều kiện xác định của phương trình + Vấn đề 2. Phương trình tương đương – phương trình hệ quả + Vấn đề 3. Giải phương trình [ads] Bài 02. Phương trình quy về phương trình bậc nhất, bậc hai + Vấn đề 1. Hàm số bậc nhất + Vấn đề 2. Số nghiệm của phương trình bậc hai + Vấn đề 3. Dấu của nghiệm phương trình bậc hai + Vấn đề 4. Biểu thức đối xứng giữa các nghiệm của phương trình bậc hai + Vấn đề 5. Tính chất nghiệm của phương trình bậc hai + Vấn đề 6. Phương trình quy về phương trình bậc nhất, bậc hai Bài 03. Phương trình và hệ phương trình bậc nhất nhiều ẩn Mời bạn đọc xem thêm một số tài liệu tiêu biểu về chủ đề phương trình và hệ phương trình bên dưới: + Kỹ thuật giải nhanh hệ phương trình – Đặng Thành Nam + Tư duy sáng tạo tìm tòi lời giải PT – BPT – HPT đại số và vô tỷ – Lê Văn Đoàn + Tư duy logic tìm tòi lời giải hệ phương trình – Mai Xuân Vinh
Bài tập sử dụng phương pháp hàm số để giải hệ phương trình
Tài liệu gồm 64 trang hướng dẫn sử dụng phương pháp hàm số giải hệ phương trình, các bài toán hệ phương trình được chọn lọc và giải chi tiết. Phương pháp hàm số là một phương pháp quan trọng và rất hay được sử dụng để giải các bài toán hệ phương trình, đây là một trong những phương pháp được “yêu thích” trong các đề thi THPT Quốc gia môn Toán bởi tính sáng tạo, khả năng nhận dạng và nhạy bén trong việc chọn hàm số. Thông qua tài liệu, bạn đọc sẽ nắm được một số tư duy biến đổi điển hình để có thể đưa về dạng bài quen thuộc, từ đó có thể chọn một hàm số thích hợp và làm đơn giản bài toán. [ads]
Bài tập phương pháp lũy thừa giải hệ phương trình có lời giải chi tiết
Tài liệu gồm 19 trang hướng dẫn phương pháp lũy thừa giải hệ phương trình thông qua các bài toán được giải chi tiết. Cùng với phương pháp hàm số đã trình bày ở bài trước thì phương pháp lũy thừa cũng là một phương pháp phổ biến trong việc giải phương trình. Có thể nói đây là phương pháp được nghĩ đến đầu tiên khi giải các hệ phương trình chứa dấu căn, vì ta có thể ngay lập tức loại bỏ dấu căn bằng cách nâng lũy thừa tương ứng. Tuy nhiên cần phải “thận trọng” khi sử dụng phương pháp này vì việc nâng lũy thừa có thể khiến cho các phương trình hệ quả có số mũ lớn và khó giải. Thông qua tài liệu, bạn đọc sẽ “nhớ mặt” được các dạng hệ phương trình có thể sử dụng phương pháp nâng lũy thừa, và hướng sử lý phương trình hệ quả sau đó. [ads]
Bài tập phương trình chứa căn - Lê Văn Đoàn
Tài liệu 7 trang do thầy Lê Văn Đoàn biên soạn phân dạng và tuyển chọn bài tập phương trình chứa căn. Các dạng toán phương trình chứa căn gồm: + Dạng 1. Phương trình chứa căn cơ bản + Dạng 2. Phương trình chứa căn sử dụng phương pháp đặt ẩn phụ + Dạng 3. Đưa về phương trình tích số (nhóm, liên hợp, …) + Dạng 4. Sử dụng hằng đẳng thức đưa về phương trình cơ bản Ngoài ra còn có các phương pháp giải phương trình chứa căn khác như: đánh giá bằng bất đẳng thức, lượng giác hóa, hàm số … [ads]