Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THPT Thanh Đa TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THPT Thanh Đa TP HCM Bản PDF Nhằm kiểm tra đánh giá chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2, vừa qua, trường THPT Thanh Đa, thành phố Hồ Chí Minh đã tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 12 năm học 2018 – 2019. Đề thi HK2 Toán lớp 12 năm 2018 – 2019 trường THPT Thanh Đa – TP HCM có mã đề 132, đề thi có 04 trang với 30 câu trắc nghiệm và 06 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi HK2 Toán lớp 12 năm 2018 – 2019 trường THPT Thanh Đa – TP HCM : + Một vật bắt đầu chuyển động liên tục trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) được cho bởi phương trình v(t) = -1/2.t^2 + t + 2. Tính quãng đường mà vật di chuyển trong 3 giờ đó. [ads] + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x = 1 + 3t, y = 4 – t, z = 2 – t (t thuộc R) và mặt phẳng (P): 6x – 2y – (m – 1)z + 7 = 0 với m là tham số. Tìm tất cả các giá trị của tham số thực m để đường thẳng d vuông góc với mặt phẳng (P). + Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện |z – 2 + 3i| = 5 là đường tròn có tâm và bán kính lần lượt là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề cuối kỳ 2 Toán 12 năm 2021 - 2022 trường THPT Bảo Thắng 3 - Lào Cai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra cuối học kỳ 2 môn Toán 12 năm học 2021 – 2022 trường THPT Bảo Thắng số 3, tỉnh Lào Cai; đề gồm 40 câu trắc nghiệm (08 điểm) và 04 câu tự luận (02 điểm), thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề). Trích dẫn đề cuối kỳ 2 Toán 12 năm 2021 – 2022 trường THPT Bảo Thắng 3 – Lào Cai : + Cho hàm số f x liên tục và không âm trên đoạn [3;6]. Diện tích hình phẳng giới hạn bởi các đường y fx y x 0 3 và x 6 được tính theo công thức nào dưới đây? + Trong không gian Oxyz cho hai điểm A B 2 0 0 1 3 3 và đường thẳng 2 11 1 ∆ xyz. Gọi M abc là điểm thuộc đường thẳng ∆ sao cho chu vi tam giác MAB nhỏ nhất. Khi đó abc bằng? + Tìm tất cả giá trị thực của tham số m sao cho có đúng 3 số số phức z thỏa mãn z im 1 và 2 4 z z là số thực.
Đề kiểm tra học kì 2 Toán 12 năm 2021 - 2022 sở GDĐT Vĩnh Long
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra cuối học kì 2 môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Vĩnh Long.
Đề kiểm tra cuối kì 2 Toán 12 năm 2021 - 2022 sở GDĐT Đà Nẵng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng cuối học kì 2 môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Đà Nẵng; đề thi mã đề 168 gồm 03 trang với 35 câu trắc nghiệm (07 điểm) và 04 câu tự luận (03 điểm), thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề).
Đề kiểm tra học kỳ 2 Toán 12 năm 2021 - 2022 sở GDĐT Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra cuối học kỳ 2 môn Toán 12 (THPT & GDTX) năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hậu Giang; đề thi được biên soạn theo hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án mã đề 701 – 702 – 703 – 704. Trích dẫn đề kiểm tra học kỳ 2 Toán 12 năm 2021 – 2022 sở GD&ĐT Hậu Giang : + Trong mặt phẳng Oxy, cho điểm M (3;2) biểu diễn số phức z. Mệnh đề nào sau đây đúng? A. Số phức z có phần thực là 3, phần ảo là 2. B. Số phức z có phần thực là 3, phần ảo là −2. C. Số phức z có phần thực là 2, phần ảo là 3. D. Số phức z có phần thực là 3, phần ảo là 2. + Trong không gian với hệ tọa độ Oxyz, cho hai điểm M (-2;-2;1), A(1;2;-3) và đường thẳng 1 5 221 xy z d .Tìm một vectơ chỉ phương u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng nhỏ nhất? + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng 3 3 2 15 0 Pxyz và ba điểm A(1;2;0), B(1;-1;3), C(1;-1;-1). Điểm 0 00 Mx y z thuộc P sao cho 22 2 2MA MB MC nhỏ nhất. Tính giá trị biểu thức 0 00 T x yz 23.