Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập định lí Thalès Toán 8 Kết Nối Tri Thức Với Cuộc Sống

Tài liệu gồm 84 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề định lí Thalès trong chương trình môn Toán 8 bộ sách Kết Nối Tri Thức Với Cuộc Sống. MỤC LỤC : Chương 4 . ĐỊNH LÍ THALÈS 22. Bài số 15 . ĐỊNH LÍ THALÈS TRONG TAM GIÁC 22. A. Trọng tâm kiến thức 22. 1. Đoạn thẳng tỉ lệ 22. 2. Định lí Thalès trong tam giác 22. B. Các dạng bài tập và phương pháp giải 23. + Dạng 1. Tìm tỉ số của các đoạn thẳng 23. + Dạng 2. Tính độ dài đoạn thẳng 23. + Dạng 3. Chứng minh các hệ thức 26. + Dạng 4. Chứng minh hai đường thẳng song song 28. C. Bài tập vận dụng 28. Bài số 16 . ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC 33. A. Trọng tâm kiến thức 33. 1. Định nghĩa đường trung bình của tam giác 33. 2. Tính chất đường trung bình của tam giác 33. B. Các dạng bài tập và phương pháp giải 33. + Dạng 1. Tính độ dài đoạn thẳng và chứng minh các quan hệ về độ dài 33. + Dạng 2. Chứng minh hai đuờng thẳng song song. Chứng minh ba điểm thẳng hàng 34. C. Bài tập vận dụng 35. Bài số 17 . TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC 38. A. Trọng tâm kiến thức 38. B. Các dạng bài tập và phương pháp giải 38. + Dạng 1. Tính độ dài đoạn thẳng 38. + Dạng 2. Chứng minh hệ thức hình học 40. + Dạng 3. Liên quan đến tỉ số diện tích tam giác 42. C. Bài tập vận dụng 42. LUYỆN TẬP CHUNG 44. A. Định lí Thalès 44. 1. Bài tập rèn luyện 44. 2. Bài tập bổ sung 47. B. Định lí Thalès đảo 69. 1. Bài tập rèn luyện 69. 2. Bài tập bổ sung 71. C. Đường trung bình của tam giác 76. 1. Bài tập rèn luyện 76. 2. Bài tập bổ sung 77. D. Tính chất đường phân giác của tam giác 80. 1. Bài tập rèn luyện 80. 2. Bài tập bổ sung 82. ÔN TẬP CHƯƠNG IV 86. A. Trọng tâm kiến thức 86. B. Các dạng bài tập và phương pháp giải 86. + Dạng 1. Tính độ dài đoạn thẳng. Tỉ số 86. + Dạng 2. Chứng minh đoạn thẳng bằng nhau 88. + Dạng 3. Tính tỉ số của hai đường thẳng 89. + Dạng 4. Sử dụng tính chất đường trung bình để chứng minh bài toán 91. C. Bài tập vận dụng 92. D. Bài tập bổ sung 95.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích hình thang
Tài liệu gồm 08 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT + Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao. + Diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích hình thang. Phương pháp giải: Sử dụng công thức tính diện tích hình thang. Dạng 2. Tính diện tích hình bình hành. Phương pháp giải: Sử dụng công thức tính diện tích hình bình hành. Dạng 3. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 4. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Phương pháp giải: + Kí hiệu maxS là giá trị lớn nhất của biểu thức S, minS là giá trị nhỏ nhất của biểu thức S. + Sử dụng tính chất đường vuông góc ngắn hcm đường xiên. + Nếu diện tích của một hình luôn nhỏ hon hoặc bằng một hằng số M và tồn tại một ví trí của hình để diện tích bằng M thì M là diện tích lớn nhất của hình. Tương tự với trường hợp diện tích nhỏ nhất. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Lưu ý: + Nếu hai tam giác có một cạnh bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các chiều cao tương ứng. + Nếu hai tam giác có một đường cao bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các cạnh tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính toán, chứng minh về diện tích tam giác. Phương pháp giải: Sử dụng công thức tính diện tích tam giác. Dạng 2. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. Dạng 3. Sử dụng công thức tính diện tích để chứng minh các hệ thức. Phương pháp giải: Phát hiện quan hệ về diện tích trong hình rồi sử dụng các công thức tính diện tích. Dạng 4. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 5. Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải: Để tìm diện tích lớn nhất hoặc nhỏ nhất cùa một hình, ta có thể sử dụng mối quan hệ giữa đường vuông góc và đường xiên. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình chữ nhật
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm diện tích đa giác. Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó. Mỗi đa giác có một diện tích là một số dương xác định. Diện tích đa giác có các tính chất sau: + Hai tam giác bằng nhau thì có diện tích bằng nhau. + Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó. + Nếu chọn hình vuông có cạnh 1 cm, 1 dm, 1 m … làm đơn vị đo diện tích thì đơn vị diện tích của hình vuông đó tương ứng là 1 cm2, 1 dm2, 1 m2 … 2. Công thức tính diện tích một số hình cơ bản. + Diện tích hình chữ nhật bằng tích hai kích thước của nó. + Diện tích hình vuông bằng bình phương cạnh của nó. + Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông. + Diện tích tam giác thường bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Sử dụng ba khái niệm diện tích của đa giác. Dạng 2. Diện tích hình chữ nhật. Phương pháp giải: Sử dụng công thức tính diện tích hình chữ nhật. Dạng 3. Diện tích hình vuông. Phương pháp giải: Sử dụng công thức tính diện tích hình vuông. Dạng 4. Diện tích tam giác vuông. Phương pháp giải: Sử dụng công thức tính diện tích tam giác vuông và định lí Pytago. Dạng 5. Tổng hợp các dạng trên. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Diện tích hình chữ nhật. Dạng 2: Tính độ dài các cạnh của hình chữ nhật. Dạng 3: Diện tích hình vuông. Diện tích tam giác vuông. Dạng 4: Bài tập tổng hợp.
Chuyên đề đa giác, đa giác đều
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đa giác, đa giác đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Đa giác: Đa giác A1A2…An là hình gồm n đoạn thẳng A1A2; A2A3;…AnA1 trong đó bất kì hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng. 2. Đa giác lồi: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của đa giác. 3. Các khái niệm khác. + Một đa giác có n đỉnh được gọi n-giác. + Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. + Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA + Dạng 1. Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác trong phần Tóm tắt lý thuyết ở trên. + Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Tổng các góc trong của đa giác n cạnh (n > 2) là (n – 2).180°. + Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. + Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa đa giác đều, công thức tính góc của đa giác đều. B. PHIẾU BÀI TỰ LUYỆN