Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra CLB Văn Hóa Toán 9 và chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 07 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Cho x và y là các số nguyên dương thỏa mãn x3 + y và x + y3 cùng chia hết cho x2 + y2. Chứng minh rằng 2x + 2y là số chính phương. + Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P. 1. Chứng minh rằng tam giác AKC đồng dạng với tam giác BPC. 2. Gọi Q là trung điểm của BP. Chứng minh BQH = BCP. 3. Tia AQ cắt BC tại I. Chứng minh AH/HB – BC/IB = 1. + Xét tập T = {1; 2; 3; …; 13}. Lập tất cả các tập con hai phần tử trong T sao cho hiệu của hai phần tử đó là 5 hoặc 8. Cho M là tập con của S = {1; 2; 3; …; 869} có tính chất hiệu hai số bất kỳ của M không là 5 hoặc 8. Hỏi M có nhiều nhất bao nhiêu phần tử?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 - 2014 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 – 2014 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 09/03/2014, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2013 - 2014 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2013 – 2014 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2014; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2013 – 2014 sở GD&ĐT Ninh Bình : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = mx – 2 và parabol (P) có phương trình y 2 x 4. Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B. Tìm các giá trị của m để đoạn AB có độ dài nhỏ nhất. + Cho đường tròn tâm O đường kính MN, dây cung AB vuông góc với MN tại điểm I nằm giữa O, N. Gọi K là một điểm thuộc dây AB nằm giữa A, I. Các tia MK, NK cắt đường tròn tâm O theo thứ tự tại C, D. Gọi E, F, H lần lượt là hình chiếu của C trên các đường thẳng AD, AB, BD. Chứng minh rằng: a) AC.HF AD.CF b) F là trung điểm của EH c) Hai đường thẳng DC và DI đối xứng với nhau qua đường thẳng DN. + Cho n và k là các số tự nhiên 4 2k 1 An 4. a) Tìm k, n để A là số nguyên tố. b) Chứng minh rằng: + Nếu n không chia hết cho 5 thì A chia hết cho 5. + Với p là ước nguyên tố lẻ của A ta luôn có p – 1 chia hết cho 4.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 - 2013 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 – 2013 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 10/03/2013.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 - 2012 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 – 2012 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 11/03/2012, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.