Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Ngày 07 tháng 05 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 - 2019. Kỳ thi nhằm mục đích giúp học sinh rèn luyện thường xuyên để củng cố và nâng cao kiến thức Toán THCS, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội được biên soạn dưới dạng tự luận, bao gồm 1 trang với 6 bài toán. Học sinh được cấp 90 phút (không tính thời gian giám thị coi thi phát đề) để hoàn thành bài thi khảo sát chất lượng môn Toán lớp 9. Trích dẫn đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội: Một phòng họp có 300 ghế ngồi, được xếp thành một số hàng có số ghế bằng nhau. Buổi họp có 378 người tham dự, ban tổ chức đã kê thêm 3 hàng ghế và mỗi hàng phải xếp thêm 1 ghế, mới đủ chỗ ngồi. Hỏi lúc đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế, biết số hàng ghế ban đầu không vượt quá 20. Cho phương trình: x^2 - (x - 3)x - m + 2 = 0 (x là ẩn số). (a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m. (b) Tìm m để phương trình có ít nhất một nghiệm dương. Cho đường tròn (O;R) và dây BC cố định (BC < 2R), BF là đường kính. A là điểm di chuyển trên cung lớn BC (A khác B, C) sao cho tam giác ABC có ba góc nhọn. Các đường cao AD và CE của tam giác ABC cắt nhau tại H. (1) Chứng minh tứ giác AEDC là tứ giác nội tiếp. (2) Chứng minh HF đi qua trung điểm G của đoạn thẳng AC. (3) Chứng minh AF/sinDEC không đổi. (4) Cho BC = 1,5R; gọi I là hình chiếu của G trên AB. Hãy tính bán kính đường tròn ngoại tiếp tam giác IBC theo R.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát lần 2 Toán 9 năm 2023 - 2024 trường Trần Quốc Toản - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng lần 2 môn Toán 9 năm học 2023 – 2024 trường TH & THCS Trần Quốc Toản, thành phố Bắc Ninh, tỉnh Bắc Ninh; đề thi gồm 40 câu trắc nghiệm (04 điểm – 50 phút) và 04 câu tự luận (06 điểm – 70 phút), có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát lần 2 Toán 9 năm 2023 – 2024 trường Trần Quốc Toản – Bắc Ninh : + Cho tam giác ABC vuông tại A có AB AC đường cao AH H BC. a) Cho biết AB cm AC cm 3 4. Tính độ dài các đoạn thẳng BC AH và HC. b) Gọi E và F lần lượt là hình chiếu của H trên AB và AC. Chứng minh: 2 AE AB AF AC EF. c) Gọi M và N lần lượt là hình chiếu của E và F trên BC. Chứng minh: MB NC BC. + Có bao nhiêu cặp số nguyên a b để biểu thức 93 62 3 viết được được dạng 2 a b 3 với a b? + Tổng của hai số tự nhiên bằng 19. Tích của hai số đó có giá trị lớn nhất bằng?
Đề khảo sát lần 1 Toán 9 năm 2023 - 2024 trường Trần Quốc Toản - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng lần 1 môn Toán 9 năm học 2023 – 2024 trường TH & THCS Trần Quốc Toản, thành phố Bắc Ninh; đề thi gồm 30 câu trắc nghiệm (03 điểm – 30 phút) và 04 câu tự luận (07 điểm – 60 phút), có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát lần 1 Toán 9 năm 2023 – 2024 trường Trần Quốc Toản – Bắc Ninh : + Giải bài toán sau bằng cách lập phương trình: Một tổ sản xuất theo kế hoạch mỗi ngày làm được 600 sản phẩm. Do cải tiến kĩ thuật nên mỗi ngày đã làm được 800 sản phẩm và hoàn thành trước kế hoạch 2 ngày. Tính số sản phẩm tổ phải làm theo kế hoạch. + Cho tam giác ABC vuông tại A có AB AC đường cao AH H BC. a) Chứng minh rằng ABC HAC từ đó suy ra 2 AC HC BC. b) Cho BH cm HC cm 1 4. Tính độ dài các cạnh AC và AH. c) Kẻ BE là đường phân giác trong (E AC) của ABC. Đường thẳng qua C vuông góc với BE tại D và cắt AB tại I. Chứng minh: 2 IA AB AD ID AI. + Cho ABC có AB cm AC cm BC cm 9 12 15. Trên cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM cm AN cm 3 4. Kết luận nào sau đây là sai?
Đề khảo sát Toán 9 đầu năm 2023 - 2024 trường THCS Phúc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 đầu năm học 2023 – 2024 trường THCS Phúc Lâm, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 đầu năm 2023 – 2024 trường THCS Phúc Lâm – Hà Nội : + Cho biểu thức: P. a) Tìm điều kiện xác định để P có nghĩa. b) Rút gọn P. c) Tính giá trị của P tại x = 3. d) Tìm các giá trị nguyên của x để P có giá trị là một số nguyên. + Một người đi từ A đến B với vận tốc trung bình 15km/h. Lúc về người đó đi với vận tốc 12km/h, nên thời gian đi ít hơn thời gian về 12 phút. Tính độ dài quãng đường AB? + Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt cạnh BC tại D. Kẻ BM và CN vuông góc với AD (M, N thuộc AD). Chứng minh rằng: a) Tam giác BMD đồng dạng với tam giác CND. b) AB/AC = BM/CN. c) 1/DM – 1/DN = 2/AD.
Đề rà soát Toán 9 năm 2022 - 2023 trường THCS Tản Hồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề rà soát chất lượng học sinh môn Toán 9 năm học 2022 – 2023 trường THCS Tản Hồng, huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề rà soát Toán 9 năm 2022 – 2023 trường THCS Tản Hồng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ca nô chuyển động xuôi dòng từ A đến B sau đó ngược dòng từ B về A hết tổng cộng 5 giờ. Biết quãng đường sông từ A đến B dài 60 km và vận tốc của dòng nước là 5km/h. Tính vận tốc thực của ca nô (Vận tốc thực của ca nô khi nước đứng yên). + Một quả bóng tennis có đường kính 6,5 cm. Tính diện tích nguyên liệu cần dùng để làm mặt xung quanh của quả bóng (làm tròn đến chữ số thập phân thứ 2, giả thiết rằng nguyên liệu làm các mối nối là không đáng kể và lấy π ≈ 3,14). + Cho tam giác ABC nhọn nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Kẻ đường kính AQ của đường tròn (O) cắt cạnh BC tại I. 1) Chứng minh bốn điểm A, F, H, E cùng thuộc một đường tròn. 2) Chứng minh: BAD CAQ. 3) Gọi P là giao điểm của AH và EF. Chứng minh ∆AEP đồng dạng với ABI và PI HQ.