Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 10 môn Toán THPT QG lần 2 năm 2018 – 2019 trường THPT chuyên Vĩnh Phúc

Nội dung Đề thi KSCL lớp 10 môn Toán THPT QG lần 2 năm 2018 – 2019 trường THPT chuyên Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối lớp 10 đề thi KSCL Toán lớp 10 THPT QG lần 2 năm 2018 – 2019 trường THPT chuyên Vĩnh Phúc, đề có mã 234 gồm 06 trang với 50 câu hỏi và bài tập trắc nghiệm khách quan, học sinh làm bài trong thời gian 90 phút, đề nhằm kiểm tra tổng quát lại các kiến thức Đại số 10 và Hình học 10 đã học, đây là một kỳ thi thường niên tại trường nhằm liên tục thúc đẩy các em nâng cao năng lực giải Toán để hướng đến mục tiêu là kỳ thi THPT Quốc gia môn Toán sau này. Trích dẫn đề thi KSCL Toán lớp 10 THPT QG lần 2 năm 2018 – 2019 trường THPT chuyên Vĩnh Phúc : + Cho góc α ∈ (90°;180°). Khẳng định nào sau đây đúng? A. sinα và cotα cùng dấu. B. Tích sin .cot α α mang dấu âm. C. Tích sin .cos α α mang dấu dương. D. sinα và tanα cùng dấu. + Trong mặt phẳng tọa độ Oxy cho điểm M(3;1). Giả sử A(a;0) và B(0;b) (với a, b là các số thực không âm) là hai điểm sao cho tam giác MAB vuông tại M và có diện tích nhỏ nhất. Tính giá trị biểu thức T = a^2 + b^2. [ads] + Cho hàm số y = f(x) = |x – 2018| + |x + 2018|. Mệnh đề nào sau đây sai? A. Hàm số y = f(x) có tập xác định là R. B. Đồ thị hàm số y = f(x) nhận trục tung làm trục đối xứng. C. Hàm số y = f(x) là hàm số chẵn. D. Đồ thị hàm số y = f(x) nhận gốc tọa độ O làm tâm đối xứng. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 10 lần 1 năm 2019 - 2020 trường Thuận Thành 1 - Bắc Ninh
Ngày … tháng 01 năm 2020, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2019 – 2020. Đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh mã đề 716 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 716, 717, 718, 719, 720 và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Phủ định mệnh đề “có một học sinh của lớp 10A không thích học môn toán” là? A. Tất cả các bạn lớp 10A đều thích học môn toán. B. Không có bạn nào lớp 10A thích học môn toán. C. Có ít nhất một bạn lớp 10A không thích học môn toán. D. Có nhiều nhất một bạn lớp 10A không thích học môn toán. + Để giữ gìn phong tục tết Việt Nam, gia đình bác Long Thắm có tờ 100.000 đồng muốn đổi thành các tờ 5000 đồng và 10.000 đồng để mừng tuổi cho các cháu? Hỏi hai bác có bao nhiêu cách đổi? [ads] + Lớp học 10A của trường THPT Thuận Thành số 1, tỉnh Bắc Ninh có 30 học sinh. Qua khảo lựa chọn về sở thích các môn thể dục thể thao như đá cầu, bóng đá, bóng chuyền … được biết có 13 bạn thích đá cầu, 14 bạn thích bóng chuyền và 15 bạn thích bóng đá. Có 9 bạn thích cả bóng đá và đá cầu, có 8 bạn thích cả đá cầu và bóng chuyền và 5 bạn chỉ thích bóng đá nhưng không thích bóng chuyền. Hỏi lớp 10A có bao nhiêu bạn không thích cả ba môn thể thao nói trên biết rằng có 6 bạn thích cả ba môn thể thao đó? + Cho hình vuông ABCD có cạnh bằng 2. Gọi M, N lần lượt là trung điểm đoạn thẳng AB, CD. Gọi H thuộc đoạn MN sao cho HM = 3HN. Lấy điểm I thuộc đường thẳng CD sao cho BI vuông góc với AH. Khi đó S_CAI thuộc khoảng nào sau đây? + Cho hai điểm A(-3,2), B(4,3). Điểm C thuộc trục Ox và có hoành độ dương để tam giác CAB vuông tại C. Khi đó tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?
Đề khảo sát Toán 10 lần 1 năm 2019 - 2020 trường Yên Phong 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh khối 10 đề kiểm tra khảo sát chất lượng môn Toán 10 lần 1 năm học 2019 – 2020 trường THPT Yên Phong số 1, tỉnh Bắc Ninh; đề gồm có 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Yên Phong 1 – Bắc Ninh : + Một gia đình có ba người lớn và hai trẻ nhỏ đi xem xiếc mua vé hết 590.000 đồng. Một gia đình khác có hai người lớn và một trẻ nhỏ cũng đi xem xiếc và mua vé hết 370.000 đồng.Hỏi giá một vé của trẻ nhỏ bao nhiêu tiền? A. 80.000 đồng. B. 60.000 đồng. C. 50.000 đồng. D. 70.000 đồng. + Lớp 10A trường Yên Phong 1 – Bắc Ninh có 45 học sinh trong đó có 25 em thích môn Toán, 20 em thích môn Anh,18 em thích môn Văn, 6 em không thích ba môn trên và 5 em thích cả ba môn. Khi đó số em thích chỉ một trong ba môn trên là? [ads] + Một chiếc xe ô tô chuyển động với vận tốc xác định theo thời gian có phương trình v(t) = 4t^3 – t^4 (m/s). Ở đây t là đơn vị thời gian tính theo giây. Hỏi trong khoảng thời gian từ 0 đến 4 giây thì vận tốc của xe đạt giá trị lớn nhất bằng bao nhiêu? + Cho tam giác ABC. Tìm quỹ tích điểm M thỏa mãn: |2MA + 3MB + 4MC| = |MB – MA|. A. Quỹ tích của M là đường tròn bán kính AB/2. B. Quỹ tích của M là trung điểm của đoạn AB. C. Quỹ tích của M là đường tròn bán kính AB/9. D. Quỹ tích của M là đường trung trục của đoạn AB. + Tìm phương trình đường thẳng d: y = ax + b. Biết đường thẳng d đi qua điểm I(1;2) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 4. Khi đó a^2 + b^2 bằng?
Đề thi chuyên đề Toán 10 lần 2 năm 2019 - 2020 trường Ngô Gia Tự - Vĩnh Phúc
Ngày … tháng 01 năm 2019, trường THPT Ngô Gia Tự – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán 10 lần thứ hai năm học 2019 – 2020. Đề thi chuyên đề Toán 10 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc gồm có 02 trang với 12 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chuyên đề Toán 10 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc : + Một công ty Taxi có 85 xe chở khách gồm hai loại: xe chở được 4 khách và xe chở được 7 khách. Nếu dùng tất cả số xe đó, tối đa một lần công ty chở được 445 khách. Số lượng xe mỗi loại là? A. 35 xe 4 chỗ, 50 xe 7 chỗ. B. 40 xe 4 chỗ, 45 xe 7 chỗ. C. 50 xe 4 chỗ, 35 xe 7 chỗ. D. 45 xe 4 chỗ, 40 xe 7 chỗ. [ads] + Cho tam giác ABC, các điểm M, N lần lượt thuộc các cạnh AB, AC sao cho AB = 3AM, 3AC = 4AN. Gọi I là giao điểm của CM và BN. a) Phân tích các vectơ BN, CM theo hai vec tơ AB, AC. b) Tìm k, h thuộc R sao cho IA = kIB + hIC. + Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Trong các khẳng định sau, khẳng định nào sai? A. Hàm số đồng biến trên khoảng (1;3). B. Hàm số nghịch biến trên khoảng (3;4). C. Hàm số nghịch biến trên khoảng (−2;1). D. Hàm số đồng biến trên khoảng (0;3).