Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp quy nạp với các bài toán phổ thông - Nguyễn Mỹ Lệ

Tài liệu gồm 112 trang, là luận văn thạc sĩ khoa học của tác giả Nguyễn Thị Mỹ Lệ (Đại học Khoa học Tự Nhiên, Đại học Quốc gia Hà Nội), đưa ra cái nhìn tổng quan về phương pháp quy nạp toán học, từ nguyên lý và các hình thức của phương pháp đến những bài tập áp dụng trong các phân môn khác nhau. 1 Kiến thức cơ bản về phương pháp quy nạp toán học. 1.1 Nguồn gốc của phương pháp quy nạp toán học. 1.2 Quy nạp và quy nạp toán học. 1.3 Giới thiệu phương pháp quy nạp toán học. 1.3.1 Nguyên lí quy nạp toán học. 1.3.2 Phương pháp quy nạp toán học. 1.3.3 Các ví dụ. 1.4 Một số hình thức của phương pháp quy nạp toán học. 1.4.1 Hình thức quy nạp chuẩn tắc. 1.4.2 Hình thức quy nạp nhảy bước. 1.4.3 Hình thức quy nạp kép. 2 Ứng dụng phương pháp quy nạp toán học trong giải toán. 2.1 Phương pháp quy nạp toán học trong các bài toán số học, đại số, giải tích. 2.1.1 Một số bài toán chia hết và chia có dư. 2.1.2 Một số bài toán về dãy số. 2.1.3 Một số bài toán về tính tổng và chứng minh đẳng thức. 2.1.4 Một số bài toán chứng minh bất đẳng thức. 2.2 Phương pháp quy nạp toán học trong các bài toán hình học. 2.2.1 Tính toán bằng quy nạp. 2.2.2 Chứng minh bằng quy nạp. 2.2.3 Dựng hình bằng quy nạp. 2.2.4 Quy nạp với bài toán quỹ tích. 2.3 Phương pháp quy nạp toán học trong các bài toán rời rạc khác. 3 Một số đề thi tham khảo. 3.1 Đề thi Olympic toán học quốc tế. 3.2 Đề thi vô địch các nước và khu vực.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải toán chuyên đề dãy số - Nguyễn Minh Hải
Tài liệu gồm 23 trang hướng dẫn giải toán chuyên đề dãy số, tài liệu được biên soạn bởi thầy Nguyễn Minh Hải. Phần 1. Một số vấn đề về lý thuyết I – Phương pháp quy nạp toán học II – Một số vấn đề về dãy số Dãy số tăng, giảm (đơn điệu) Dãy số bị chặn Giới hạn dãy số Cấp số công và cấp số nhân III – Một số dạng toán về dãy số thường gặp Chứng minh dãy số tăng, giảm, bị chặn, dãy số có giới hạn Chứng minh dãy số lập thành cấp số cộng, cấp số nhân, tính chất của cấp số Tìm công thức tổng quát của dãy số Chứng minh dãy số có giới hạn và tìm giới hạn của dãy số Một số dạng toán khác về dãy số: bất đẳng thức dãy số, chứng minh tính chất chia hết, chứng minh dãy số nguyên … [ads] Phần 2. Áp dụng giải toán I – Chứng minh dãy số tăng, giảm và bị chặn II – Công thức tổng quát của dãy số III – Tìm giới hạn của dãy số Nếu dãy số cho bởi công thức tổng quát thi ta thường sử dụng các phương pháp tính giới hạn của dãy số để tính. Trong nhiều trường hợp ta phải biến đổi công thức tổng quát đó về dạng đơn giản hơn trước khi tính giới hạn. Một số phương pháp tính giới hạn của dãy số: + Nhân liên hợp đối với giới hạn dạng ∞ – ∞ + Chia cả tử và mẫu cho lũy thừa bậc cao nhất của n đối với giới hạn dạng ∞/∞ + Kết hợp cả hai phương pháp đã nêu ở trên + Sử dụng định lý giới hạn kẹp + Sử dụng điều kiện đủ để dãy số có giới hạn, thiết lập biểu thức về giới hạn. Kết quả giới hạn là nghiệm của phương trình nào đó IV – Một số dạng toán khác Phần 3. bài tập tổng hợp
Tài liệu dãy số - cấp số dành cho học sinh khối chuyên - Lê Quang Ánh
Sách gồm 80 trang với phần tóm tắt lý thuyết và các bài tập nâng cao về dãy số, cấp số cộng và cấp số nhân. Sách gồm 6 chương: + Chương 1 – Cấp số cộng + Chương 2 – Cấp số nhân + Chương 3 – Dãy số + Chương 4 – Dãy số Un = f(Un-1) + Chương 5 – Dãy quy nạp tuyến tính + Chương 6 – Bài tập tổng hợp [ads]
Phương pháp xác định công thức tổng quát của dãy số - Nguyễn Tất Thu
Tài liệu phương pháp xác định công thức tổng quát của dãy số của tác giả Nguyễn Tất Thu gồm 46 trang. Tài liệu gồm 3 nội dung chính: + Sử dụng cấp số cộng – cấp số nhân để xây dựng cách tìm công thức tổng quát của một số dạng dãy số có công thức truy hồi đặc biệt. + Sử dụng phép thế lượng giác để xác định công thức tổng quát của dãy số. + Ứng dụng bài toán tìm công thức tổng quát của dãy số vào giải một số bài toán về dãy số – tổ hợp. [ads]
Kĩ thuật tính giới hạn của dãy số cho bởi công thức truy hồi - Huỳnh Đoàn Thuần
Tài liệu gồm 24 trang trình bày kĩ thuật tính giới hạn của dãy số cho bởi công thức truy hồi, các dạng toán trong tài liệu gồm: + Dạng 1: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách xác đinh CTTQ của dãy + Dạng 2: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách sử dụng nguyên lý kẹp + Dạng 3: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách sử dụng tính đơn điệu và bị chặn [ads]