Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Archimedes Academy Hà Nội

Nội dung Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Archimedes Academy Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kì 1 Toán lớp 9 năm 2020-2021 Đề thi giữa học kì 1 Toán lớp 9 năm 2020-2021 Để đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, trường THCS Archimedes Academy đã tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 năm học 2020-2021 vào ngày ... tháng 11 năm 2020. Đề thi gồm 5 câu, thời gian làm bài 90 phút và được biên soạn theo hình thức đề thi tự luận. Trong đề thi, có các câu hỏi như: Cho hàm số \( y = mx + 2 \) (với \( m \neq -1 \)) có đồ thị là đường thẳng d. a) Tìm giá trị của \( m \) sao cho đồ thị đi qua điểm M(2,1). b) Vẽ đồ thị hàm số và tính độ dài đoạn AB và diện tích tam giác OAB. Cho đường tròn tâm O, đường kính AB. Lấy điểm H trên đoạn OB sao cho \( HB = HO \). a) Tính bán kính đường tròn và độ dài dây CD nếu được biết \( \angle CAB = 30^{\circ} \) và \( AC = 8 \) cm. b) Chứng minh các điều kiện về tam giác ABC và tam giác BIH. c) Chứng minh các mệnh đề liên quan đến đường thẳng và góc trong tam giác. Tìm giá trị lớn nhất của biểu thức \( P = \frac{a}{b} \cdot c \). Đề thi giữa kì 1 Toán lớp 9 năm 2020-2021 của trường THCS Archimedes Academy - Hà Nội được xem là một bài kiểm tra khá đầy đủ, phù hợp để đánh giá kiến thức và kỹ năng của học sinh. Đồng thời, nó cũng giúp học sinh rèn luyện kỹ năng suy luận, tư duy logic và sự tự tin khi giải các bài toán.

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Nguyễn Trường Tộ - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Nguyễn Trường Tộ, Đống Đa, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Nguyễn Trường Tộ – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Nguyễn Trường Tộ – Hà Nội : + Tòa nhà Burj Khalifa (Các tiểu vương quốc Ả Rập thống nhất) được khánh thành ngày 4/1/2010 là một công trình kiến trúc cao nhất thế giới. Khi tia nắng mặt trời tạo với mặt đất một góc 37° thì bóng của tòa nhà trên là 1098,79m. Tính chiều cao của tòa nhà (kết quả cuối cùng được làm tròn đến phần nguyên, các kết quả khác được làm tròn hai chữ số thập phân). + Cho ∆ABC vuông tại A, đường cao AH. Kẻ HE AB tại E và HF AC tại F. a) Cho HC = 16 cm, HB = 9 cm. Tính AB AC AH. Lưu ý: các số liệu này chỉ được dùng cho câu a. b) Chứng minh AB AE AF AC và 2 2 AB AC HF BC. c) Chứng minh 22 2 BE CF EF. Khi nào dấu bằng xảy ra? + Cho abc 0 và thỏa mãn abbcca 8. Chứng minh ab bc ca 3.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Phú Diễn - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Phú Diễn, Bắc Từ Liêm, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Phú Diễn – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Phú Diễn – Hà Nội : + Cho hai biểu thức a) Tính giá trị của A khi x = 9. b) Rút gọn biểu thức B. c) So sánh A P B với 1 khi x > 4. + 1) Tính chiều cao cột cờ, biết bóng của cột cờ được chiếu bởi ánh sáng của Mặt Trời xuống đất dài 10,5m và góc tạo bởi tia sáng với mặt đất là 35 45. 2) Cho tam giác ABC vuông tại A AH là đường cao. a) Biết BH cm CH cm 3 6 6 4. Tính AH AC AB và HAC b) Qua B kẻ tia Bx AC. Tia Bx cắt AH tại K. Chứng minh: AH AK BH BC. c) Kẻ KE AC tại E. Chứng minh: 3 5 HE KC với số đo đã cho ở câu a. d) Gọi I giao điểm các đường phân giác các góc trong của tam giác ABC. Gọi r là khoảng cách từ I đến cạnh BC. Chứng minh: 1 3 r AH. + Cho x y là hai số thực dương thỏa mãn x y 3. Tìm giá trị nhỏ nhất của biểu thức 2 2 28 1 P xy 2 x y.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Sơn Đông - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Sơn Đông, Sơn Tây, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội : + Cho hai biểu thức. a) Tính giá trị của biểu thức A tại x = 25. b) Chứng minh 3 2 x B x. c) Tìm tất cả các giá trị nguyên của x để P AB có giá trị nguyên. + 1) Một cột đèn có bóng trên mặt đất dài 6m. Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 0 40. Tính chiều cao của cột đèn (làm tròn đến mét). 2) Cho tam giác ABC vuông tại A, đường cao AH. Biết AB cm AC cm 3 4. a) Tính AH b) Gọi D E lần lượt là hình chiếu của H trên AB và AC. Chứng minh tam giác AED và tam giác ABC đồng dạng. c) Kẻ trung tuyến AM gọi N là giao điểm của AM và DE. Tính tỉ số diện tích của tam giác AND và tam giác ABC. + Tìm các số xyz thỏa mãn đẳng thức.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Thanh Xuân, Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Cho biểu thức a) Tính giá trị của A khi 1 9 a b) Rút gọn B c) Tìm giá trị nguyên của a để B nhận giá trị nguyên. + Tính giá trị biểu thức. + Cho hình bình hành ABCD có 90 A α. Gọi I K lần lượt là hình chiếu của B′, D′ trên đường chéo AC. Gọi M N lần lượt là hình chiếu của C′ trên các đường thẳng A B. a) Chứng minh rằng: Tam giác BCM đồng dạng với tam giác DCN b) Chứng minh rằng: Tam giác CMN đồng dạng với tam giác BCA. Từ đó suy ra MN A C sinα c) Tính diện tích tứ giác ANCM biết BC 6 cm AB 4 cm và α 60. d) Chứng minh: 2 AC AD AN AB AM.