Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 - 2021 sở GDĐT Hà Tĩnh

Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Một cửa hàng chuyên kinh doanh xe máy điện với chi phí mua vào là 23 triệu đồng và bán ra với giá 27 triệu đồng mỗi chiếc. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe này, chủ cửa hàng dự định giảm giá bán và ước tính rằng, theo tỉ lệ nếu cứ giảm 100 nghìn đồng mỗi chiếc thì số lượng xe bán ra trong một năm sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải bán với giá mới là bao nhiêu để sau khi giảm giá, lợi nhuận thu được sẽ là cao nhất? + Cho tam giác ABC có góc A = 30 độ, bán kính đường tròn nội tiếp tam giác r = √3 và độ dài đường cao kẻ từ đỉnh A là h thỏa mãn 1/h2 = 1/AB2 + 1/AC2. Tính giá trị T = (sin B)^2 – (cos C)^2 và bán kính đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng tọa độ Oxy, cho A(2;3), B(-1;5) và đường thẳng d: 2x + y + 1 = 0. Tìm tọa độ điểm C thuộc đường thẳng d và tọa độ điểm D thuộc đoạn thẳng AC, biết rằng tam giác ABC cân tại B và DC = √5/5.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Quảng Xương 4 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Quảng Xương 4, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 101 – 102. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Quảng Xương 4 – Thanh Hóa : + Trong mặt phẳng tọa độ Oxy cho tam giác ∆ABC có A B (4;0) (1;0). Gọi M là điểm nằm trên tia Oy. Khi 2MA MB đạt giá trị nhỏ nhất thì tung độ của M là một số chia hết cho số nào trong các số sau đây? + Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD có tâm I (3;-1), điểm M thuộc cạnh CD sao cho MC MD 2. Tìm tọa độ đỉnh A của hình vuông ABCD biết đường thẳng AM có phương trình 2 40 x y và đỉnh A có tung độ âm. + Lớp 10A có 30 học sinh gồm 15 học sinh nam và 15 học sinh nữ. Trong một buổi chào cờ đầu tuần lớp 10A xếp thành một hàng dọc nhưng nhà trường yêu cầu các bạn nam và nữ xem kẽ nhau. Hỏi có bao nhiêu cách xếp.
Đề HSG cấp trường Toán 10 năm 2023 - 2024 trường THPT Diễn Châu 3 - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Diễn Châu 3, tỉnh Nghệ An. Đề thi với nội dung gồm 04 phần: + Phần 1. Câu trắc nghiệm nhiều phương án lựa chọn. + Phần 2. Câu trắc nghiệm đúng / sai. + Phần 3. Câu trắc nghiệm trả lời ngắn. + Phần 4. Câu hỏi tự luận.
Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Quế Võ 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Quế Võ 1, tỉnh Bắc Ninh. Đề thi được biên soạn theo cấu trúc định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Phần 1: Trắc nghiệm khách quan: 25 câu (10 điểm); Phần 2: Trắc nghiệm đúng sai: 2 câu (4 điểm); Phần 3: Trắc nghiệm trả lời ngắn: 6 câu (6 điểm). Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Quế Võ 1 – Bắc Ninh : + Một cửa hàng bán bưởi Da Xanh của Bến Tre với giá bán mỗi quả là 50000 đồng. Với giá bán này thì mỗi ngày cửa hàng chỉ bán được 40 quả. Cửa hàng dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 1000 đồng thì số bưởi bán tăng thêm được là 10 quả. Giá nhập về ban đầu cho mỗi quả là 28000 đồng. Giá bán mỗi quả Bưởi là a (nghìn đồng) để cửa hàng thu được lợi nhuận cao nhất. Tính a. + Một người quan sát đỉnh của một tòa tháp từ hai vị trí khác nhau của tòa nhà. Lần đầu tiên người đó quan sát đỉnh tháp từ tầng trệt với phương nhìn tạo với phương nằm ngang 35 và lần thứ hai người này quan sát tại sân thượng của cùng tòa nhà đó với phương nhìn tạo với phương nằm ngang 15 (tham khảo hình vẽ). + Một chiếc cổng hình parabol có chiều cao 4m và chiều ngang 8m. Người ta muốn thiết kế một cánh cổng bằng kính hình chữ nhật đặt ngay giữa cổng parabol đồng thời làm hai cánh cửa phụ hai bên (tham khảo hình vẽ). Nếu muốn chiều cao của phần cổng hình chữ nhật trong khoảng từ 1,75m đến 3m thì chiều ngang của cánh cổng (đoạn CD) hẹp nhất là m mét và rộng nhất là n mét. Khi đó tính giá trị m n.
Đề HSG Toán 10 năm 2023 - 2024 cụm trường THPT Gia Lâm Long Biên - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp cụm môn Toán 10 năm học 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 10 năm 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên – Hà Nội : + Một công ty điện tử sản suất hai loại máy tính trên hai dây chuyền độc lập (loại một và loại hai). Máy tính loại một sản xuất trên dây chuyền một với công suất tối đa 45 máy tính một ngày; máy tính loại hai sản xuất trên dây chuyền hai với công suất tối đa 80 máy tính một ngày. Để sản xuất một chiếc máy tính loại một cần 12 linh kiện và cần 9 linh kiện để sản xuất một máy tính loại hai. Biết rằng số linh kiện có thể sử dụng tối đa trong một ngày là 900 linh kiện và tiền lãi bán một chiếc máy loại một là 2.500.000 đồng; tiền lãi khi bán một chiếc máy loại hai là 1.800.000 đồng. Hỏi trong một ngày công ty cần sản xuất mỗi loại bao nhiêu máy tính để tiền lãi thu được là nhiều nhất. (Giả thiết rằng tất cả các máy tính sản xuất ra trong ngày đều bán hết). + Cho tam giác ABC đều có cạnh bằng a. Gọi D là điểm trên cạnh BC sao cho 2 3 BD BC và I là trung điểm của AD. Gọi E là điểm thoả mãn 2 5 AE AC. 1) Chứng minh ba điểm B I E là ba điểm thẳng hàng. 2) M là điểm tùy ý thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức P MA MB MC MB MC. + Trong mặt phẳng tọa độ Oxy cho hai điểm A 2 4 và B 8 4. 1) Tìm tọa độ điểm M thỏa mãn MA MB 2 0. 2) Tìm tọa độ điểm C thuộc trục hoành sao cho tam giác ABC vuông tại C. 3) Viết phương trình đường thẳng d song song với 3 4 20 0 x y và cách điểm A(-2;4) một khoảng bằng 2.