Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 8 học kì 2

Tài liệu gồm 219 trang, được biên soạn bởi thầy giáo Võ Hoàng Nghĩa, tóm tắt lí thuyết, các dạng toán và bài tập các chủ đề môn Toán 8 học kì 2. MỤC LỤC : §1 – Mở đầu về phương trình 2. A Tóm tắt lý thuyết 2. B Bài tập và các dạng toán 2. + Dạng 1. Xét xem một số cho trước có là nghiệm của phương trình hay không? 2. + Dạng 2. Xét sự tương đương của hai phương trình 4. C Bài tập về nhà 5. §2 – Phương trình bậc nhất một ẩn và cách giải 7. A Tóm tắt lý thuyết 7. B Bài tập và các dạng toán 7. + Dạng 1. Nhận dạng phương trình bậc nhất một ẩn 7. + Dạng 2. Tìm điều kiện của tham số để phương trình là phương trình bậc nhất một ẩn 8. + Dạng 3. Cách giải phương trình bậc nhất một ẩn 8. C Bài tập về nhà 11. §3 – Phương trình đưa được về dạng ax + b = 0 14. A Tóm tắt lý thuyết 14. B Bài tập và các dạng toán 14. + Dạng 1. Sử dụng các phép biến đổi thường gặp để giải một số phương trình đơn giản 14. + Dạng 2. Phương trình có chứa tham số 18. + Dạng 3. Tìm điều kiện để biểu thức chứa ẩn ở mẫu xác định 19. C Bài tập về nhà 19. §4 – Phương trình tích 22. A TÓM TẮT LÝ THUYẾT 22. B BÀI TẬP VÀ CÁC DẠNG TOÁN 22. + Dạng 1. Giải phương trình tích 22. + Dạng 2. Giải phương trình đưa về phương trình tích 24. C BÀI TẬP VỀ NHÀ 28. §5 – Phương trình chứa ẩn ở mẫu 30. A TÓM TẮT LÝ THUYẾT 30. B BÀI TẬP VÀ CÁC DẠNG TOÁN 31. + Dạng 1. Tìm điều kiện xác định của biểu thức 31. + Dạng 2. Giải phương trình chứa ẩn ở mẫu 32. C BÀI TẬP VỀ NHÀ 36. §6 – Giải bài toán bằng cách lập phương trình 38. A TÓM TẮT LÝ THUYẾT 38. B BÀI TẬP VÀ CÁC DẠNG TOÁN 38. + Dạng 1. Bài toán liên quan đến tìm số 38. + Dạng 2. Bài toán liên quan đến tỉ số phần trăm 39. + Dạng 3. Bài toán liên quan đến tỉ số phần trăm 40. + Dạng 4. Bài toán liên quan đến công việc làm chung, làm riêng 41. + Dạng 5. Bài toán liên quan đến tính tuổi 42. C BÀI TẬP VỀ NHÀ 43. §7 – ÔN TẬP CHƯƠNG III 45. A KIẾN THỨC TRỌNG TÂM 45. B CÁC DẠNG TOÁN 45. §8 – Liên hệ giữa thứ tự và phép cộng 51. A Tóm tắt lý thuyết 51. B Bài tập và các dạng toán 52. + Dạng 1. Sắp xếp thứ tự các số trên trục số. Biểu diễn mối quan hệ giữa các tập số 52. + Dạng 2. Xét tính đúng sai của khẳng định cho trước 53. + Dạng 3. So sánh 54. C Bài tập về nhà 54. §9 – Liên hệ giữa thứ tự và phép nhân 56. A Tóm tắt lý thuyết 56. B Bài tập và các dạng toán 56. + Dạng 1. Xét tính đúng sai của khẳng định cho trước 56. + Dạng 2. So sánh 57. C Bài tập về nhà 58. §10 – Bất phương trình một ẩn 59. A Tóm tắt lý thuyết 59. B Bài tập và các dạng toán 60. + Dạng 1. Kiểm tra x = a có là nghiệm của bất phương trình hay không? 60. + Dạng 2. Viết bằng kí hiệu tập hợp và biểu diễn tập nghiệm của bất phương trình trên trục số 61. C Bài tập về nhà 62. §11 – Bất phương trình bậc nhất một ẩn 63. A TÓM TẮT LÝ THUYẾT 63. B BÀI TẬP VÀ CÁC DẠNG TOÁN 63. + Dạng 1. Nhận dạng bất phương trình bậc nhất một ẩn 63. + Dạng 2. Giải bất phương trình 64. + Dạng 3. Biễu diển tập nghiệm trên trục số 67. + Dạng 4. Bất phương trình tương đương 69. + Dạng 5. Giải bài toán bằng cách lập phương trình 70. C Bài tập về nhà 71. §12 – Phương trình chứa dấu giá trị tuyệt đối 75. A TÓM TẮT LÝ THUYẾT 75. B BÀI TẬP VÀ CÁC DẠNG TOÁN 75. + Dạng 1. Rút gọn biểu thức chứa dấu giá trị tuyệt đối 75. + Dạng 2. Giải các phương trình chứa giá trị tuyêt đối 76. C BÀI TẬP VỀ NHÀ 85. §13 – ÔN TẬP CHƯƠNG IV 88. A Trọng tâm kiến thức 88. B Các dạng bài tập và phương pháp giải 88. + Dạng 1. Chứng minh bất đẳng thức 88. + Dạng 2. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức f(x) 89. + Dạng 3. Giải bất phương trình 90. + Dạng 4. Giải phương trình chứa dấu giá trị tuyệt đối 92. C BÀI TẬP VỀ NHÀ 103. §14 – Định lý Ta-lét 105. A Tóm tắt lý thuyết 105. B Bài tập và các dạng toán 106. + Dạng 1. Viết tỉ số các cặp đoạn thẳng hoặc tính tỉ số của hai đoạn thẳng 106. + Dạng 2. Sử dụng định lý Ta-lét để tính độ dài đoạn thẳng hoặc chứng minh đoạn thẳng tỉ lệ 107. C Bài tập về nhà 109. D BÀI TẬP TỰ LUYỆN 110. §15 – Định lý đảo và hệ quả của định lý Ta-lét 111. A Tóm tắt lý thuyết 111. B Bài tập và các dạng toán 112. + Dạng 1. Sử dụng hệ quả của định lý Ta-lét để tính độ dài đoạn thẳng 112. + Dạng 2. Sử dụng định lý Ta-lét đảo để chứng minh các đường thẳng song song 113. + Dạng 3. Sử dụng hệ quả định lý Ta-lét để chứng minh các hệ thức, các đoạn thẳng bằng nhau 114. C Bài tập về nhà 115. D BÀI TẬP TỰ LUYỆN 117. §16 – Tính chất của đường phân giác của tam giác 120. A Tóm tắt lý thuyết 120. B Bài tập và các dạng toán 121. + Dạng 1. Sử dụng tính chất đường phân giác của tam giác để tính độ dài đoạn thẳng 121. + Dạng 2. Sử dụng tính chất đường phân giác của tam giác để tính tỉ số, chứng minh các hệ thức, các đoạn thẳng bằng nhau, các đường thẳng song song 122. C Bài tập về nhà 124. D BÀI TẬP TỰ LUYỆN 126. §17 – Khái niệm hai tam giác đồng dạng 128. A Tóm tắt lý thuyết 128. B Bài tập và các dạng toán 129. + Dạng 1. Chứng minh hai tam giác đồng dạng 129. + Dạng 2. Tìm tỉ số đồng dạng, tính độ dài cạnh, chứng minh đẳng thức cạnh thông qua tam giác đồng dạng 130. C Bài tập về nhà 131. D BÀI TẬP TỰ LUYỆN 133. §18 – Trường hợp đồng dạng thứ nhất 135. A Tóm tắt lý thuyết 135. B Bài tập và các dạng toán 135. + Dạng 1. Chứng minh hai tam giác đồng dạng 135. + Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau 136. C Bài tập về nhà 137. D BÀI TẬP TỰ LUYỆN 138. §19 – Trường hợp đồng dạng thứ hai 139. A Tóm tắt lý thuyết 139. B Bài tập và các dạng toán 140. + Dạng 1. Chứng minh hai tam giác đồng dạng 140. + Dạng 2. Sử dụng trường hợp đồng dạng thứ hai để tính độ dài cạnh hoặc chứng minh các góc bằng nhau 141. C Bài tập về nhà 142. D BÀI TẬP TỰ LUYỆN 144. §20 – Trường hợp đồng dạng thứ ba 146. A Tóm tắt lý thuyết 146. B Bài tập và các dạng toán 146. + Dạng 1. Chứng minh hai tam giác đồng dạng 146. + Dạng 2. Sử dụng trường hợp đồng dạng thứ ba để tính độ dài các cạnh, chứng minh hệ thức cạnh, hoặc chứng minh các góc bằng nhau 147. C Bài tập về nhà 148. D BÀI TẬP TỰ LUYỆN 149. §21 – Các trường hợp đồng dạng của tam giác vuông 151. A Tóm tắt lý thuyết 151. B Bài tập và các dạng toán 152. + Dạng 1. Chứng minh hai tam giác vuông đồng dạng 152. + Dạng 2. Sử dụng trường hợp đồng dạng của tam giác vuông tính độ dài cạnh, chứng minh hệ thức cạnh hoặc chứng minh các góc bằng nhau 153. + Dạng 3. Tỉ số diện tích của hai tam giác đồng dạng 154. C Bài tập về nhà 155. D BÀI TẬP TỰ LUYỆN 156. §22 – ÔN TẬP CHƯƠNG III 158. A Tóm tắt lý thuyết 158. B Bài tập và các dạng toán 158. C Bài tập về nhà 161. D Đề kiểm tra chương III 163. §23 – Hình hộp chữ nhật 167. A Tóm tắt lý thuyết 167. B Bài tập và các dạng toán 168. + Dạng 1. Nhận biết các đỉnh, các cạnh và các mặt của hình hộp chữ nhật 168. + Dạng 2. Nhận biết vị trí tương đối của hai đường thẳng, của đường thẳng với mặt phẳng và của hai mặt phẳng của hình hộp chữ nhật 170. + Dạng 3. Tính toán các số liệu liên quan đến cạnh, mặt của hình hộp chữ nhật 171. C Bài tập về nhà 173. §24 – Thể tích của hình hộp chữ nhật 175. A Tóm tắt lý thuyết 175. B Bài tập và các dạng toán 175. + Dạng 1. Nhận biết quan hệ vuông góc giữa đường thẳng và mặt phẳng trong hình hộp chữ nhật 175. + Dạng 2. Tính thể tích hình hộp chữ nhật và các bài toán liên quan đến cạnh và mặt của hình hộp chữ nhật 176. C Bài tập về nhà 178. §25 – Hình lăng trụ đứng 179. A Tóm tắt lý thuyết 179. B Bài tập và các dạng toán 180. + Dạng 1. Xác định các đỉnh, các cạnh, các mặt và mối quan hệ giữa các cạnh với nhau của hình lăng trụ đứng 180. + Dạng 2. Tính độ dài các cạnh và các đoạn thẳng khác trong hình lăng trụ đứng 183. C Bài tập về nhà 184. §26 – Diện tích xung quanh và thể tích hình lăng trụ đứng 187. A Tóm tắt lý thuyết 187. B Bài tập và các dạng toán 187. + Dạng 1. Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình lăng trụ đứng 187. + Dạng 2. Một số bài toán thực tế trong cuộc sống liên quan đến lăng trụ đứng 189. C Bài tập về nhà 190. §27 – Hình chóp đều và hình chóp cụt đều 193. A Tóm tắt lí thuyết 193. B Bài tập và các dạng toán 195. + Dạng 1. Nhận biết các kiến thức cơ bản hình chóp đều 195. + Dạng 2. Tính độ dài các cạnh của hình chóp đều 196. C Bài tập về nhà 197. §28 – Diện tích xung quanh và thể tích của hình chóp đều 198. A Tóm tắt lí thuyết 198. B Bài tập và các dạng toán 199. + Dạng 1. Các bài toán về diện tích xung quanh, diện tích toàn phần và thể tích của hình chóp đều 199. + Dạng 2. Các bài toán cơ bản về mối quan hệ giữa hình lập phương, hình hộp chữ nhật với hình chóp đều 201. C Bài tập về nhà 202. §29 – Ôn tập chương 4 203. A Tóm tắt lí thuyết 203. B Bài tập và các dạng toán 203. C Bài tập về nhà 206. §30 – Đề kiểm tra chương 4 207. A Đề số 1 207. B Đề số 2 210.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đa giác, đa giác đều
Nội dung Chuyên đề đa giác, đa giác đều Bản PDF - Nội dung bài viết Chuyên đề đa giác, đa giác đềuTóm tắt lý thuyếtBài tập và các dạng toánA. Các dạng bài minh họaB. Phiếu bài tự luyện Chuyên đề đa giác, đa giác đều Tài liệu này bao gồm 11 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến đa giác và đa giác đều. Ngoài ra, tài liệu này cũng tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề này, với đáp án và lời giải chi tiết. Đây là một công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8, đặc biệt là chương 2 với nội dung về đa giác và diện tích đa giác. Tóm tắt lý thuyết 1. Đa giác: Đa giác A1A2...An là hình gồm n đoạn thẳng A1A2, A2A3,... AnA1, trong đó không có hai đoạn thẳng nào có một điểm chung và không nằm trên cùng một đường thẳng. 2. Đa giác lồi: Đa giác lồi luôn nằm trong một nửa mặt phẳng có bờ là một đường thẳng chứa bất kỳ cạnh nào của đa giác. 3. Các khái niệm khác: - Một đa giác có n đỉnh được gọi là n-giác. - Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. - Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. Bài tập và các dạng toán A. Các dạng bài minh họa - Dạng 1: Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác. - Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Sử dụng công thức tính tổng góc trong đa giác. - Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. - Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa và công thức tính góc của đa giác đều. B. Phiếu bài tự luyện Đề cung cấp phiếu bài tập tự luyện để học sinh có thể tự ôn tập và kiểm tra kiến thức của mình trong chuyên đề này.
Chuyên đề hình vuông
Nội dung Chuyên đề hình vuông Bản PDF - Nội dung bài viết Chuyên đề hình vuông Chuyên đề hình vuông Tài liệu này bao gồm 17 trang, tóm tắt những kiến thức quan trọng về hình vuông cần nắm vững, cung cấp các phân dạng và hướng dẫn cách giải các dạng toán liên quan. Ngoài ra, tài liệu còn tuyển chọn các bài tập từ cơ bản đến nâng cao về chuyên đề hình vuông, đi kèm đáp án và lời giải chi tiết. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8, chương 1: Tứ giác. Nó cung cấp kiến thức cần nhớ, các dạng bài tập minh họa và phiếu bài tập rèn luyện để học sinh tự rèn luyện và nắm vững kiến thức. Trong tài liệu này, người đọc sẽ được hướng dẫn cách nhận dạng hình vuông và cách giải các bài tập liên quan. Đồng thời, tài liệu cũng cung cấp phương pháp để chứng minh các quan hệ bằng nhau, song song, vuông góc, và thẳng hàng trong hình vuông. Ngoài ra, tài liệu còn giúp người đọc hiểu rõ về điều kiện để một hình trở thành hình vuông và cách giải các bài tập liên quan. Bằng cách sử dụng các dấu hiệu nhận biết hình vuông và áp dụng các tính chất của hình vuông, người đọc sẽ có thể dễ dàng tìm ra đáp án đúng cho các câu hỏi trong bài tập. Trên tất cả, tài liệu này đem đến sự hỗ trợ toàn diện cho học sinh, giúp họ nắm vững kiến thức và phát triển kỹ năng giải bài tập trong chuyên đề hình vuông một cách dễ dàng và hiệu quả.
Chuyên đề hình thoi
Nội dung Chuyên đề hình thoi Bản PDF - Nội dung bài viết Chuyên đề hình thoi Chuyên đề hình thoi Tài liệu này bao gồm 32 trang, tập trung vào việc tóm tắt lý thuyết quan trọng, phân loại các dạng toán và hướng dẫn cách giải các bài tập liên quan đến chuyên đề hình thoi. Ngoài ra, tài liệu cũng chọn lọc các bài tập từ cơ bản đến nâng cao trong chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Trong phần này, chúng ta sẽ tìm hiểu về các tính chất cơ bản của hình thoi và cách chứng minh chúng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Chứng minh tứ giác là hình thoi bằng cách sử dụng các dấu hiệu nhận biết. Ví dụ như tứ giác có bốn cạnh bằng nhau là hình thoi. Dạng 2. Vận dụng tính chất của hình thoi để chứng minh các tính chất hình học khác. Ví dụ như hình thoi là tứ giác có bốn cạnh bằng nhau và có hai đường chéo vuông góc với nhau. Dạng 3. Tìm điều kiện để tứ giác là hình thoi bằng cách áp dụng các tính chất của hình thoi. Dạng 4. Tổng hợp các dạng toán liên quan đến hình thoi. B. PHIẾU BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Phần này chứa những bài toán nâng cao giúp phát triển tư duy trong việc nhận biết và giải quyết các bài toán liên quan đến hình thoi. C. PHIẾU BÀI TỰ LUYỆN Chứa các bài tập tự luyện giúp học sinh ôn tập và củng cố kiến thức về hình thoi, từ việc chứng minh tứ giác là hình thoi đến việc áp dụng kiến thức để giải toán.
Chuyên đề đường thẳng song song với một đường thẳng cho trước
Nội dung Chuyên đề đường thẳng song song với một đường thẳng cho trước Bản PDF - Nội dung bài viết Chuyên đề đường thẳng song song với một đường thẳngTóm tắt lý thuyếtBài tập và các dạng toán Chuyên đề đường thẳng song song với một đường thẳng Chuyên đề này bao gồm 9 trang tài liệu, tập trung vào lý thuyết cơ bản cần hiểu, cách phân loại và hướng dẫn giải các dạng toán liên quan đến đường thẳng song song với một đường thẳng cho trước. Sách tuyển chọn các bài tập từ dễ đến khó, có đáp án và lời giải chi tiết, giúp học sinh nắm vững kiến thức và áp dụng vào chương trình Hình học lớp 8 chương 1: Tứ giác. Tóm tắt lý thuyết - Khoảng cách giữa hai đường thẳng song song được xác định là khoảng cách từ một điểm trên đường thẳng này đến đường thẳng kia. - Các điểm cách đường thẳng b một khoảng h nằm trên hai đường thẳng song song với b và đều cách b một khoảng h. - Tập hợp các điểm cách một đường thẳng cố định một khoảng không đổi là hai đường thẳng song song với đường đó và cách đường đó một khoảng bằng h. - Ghi chú: Tập hợp các điểm cách một điểm O cố định một khoảng bằng r là đường tròn (O, r). Bài tập và các dạng toán A. Các dạng bài tập cơ bản - nâng cao Dạng 1: Phát biểu và vận dụng tính chất, không chứng minh. Dạng 2: Tìm tập hợp điểm thỏa mãn điều kiện cho trước. Dạng 3: Tổng hợp các dạng toán trên. B. Bài tập rèn luyện Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức về đường thẳng song song và áp dụng vào giải các bài tập thực hành đa dạng.