Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 8 học kì 2

Tài liệu gồm 219 trang, được biên soạn bởi thầy giáo Võ Hoàng Nghĩa, tóm tắt lí thuyết, các dạng toán và bài tập các chủ đề môn Toán 8 học kì 2. MỤC LỤC : §1 – Mở đầu về phương trình 2. A Tóm tắt lý thuyết 2. B Bài tập và các dạng toán 2. + Dạng 1. Xét xem một số cho trước có là nghiệm của phương trình hay không? 2. + Dạng 2. Xét sự tương đương của hai phương trình 4. C Bài tập về nhà 5. §2 – Phương trình bậc nhất một ẩn và cách giải 7. A Tóm tắt lý thuyết 7. B Bài tập và các dạng toán 7. + Dạng 1. Nhận dạng phương trình bậc nhất một ẩn 7. + Dạng 2. Tìm điều kiện của tham số để phương trình là phương trình bậc nhất một ẩn 8. + Dạng 3. Cách giải phương trình bậc nhất một ẩn 8. C Bài tập về nhà 11. §3 – Phương trình đưa được về dạng ax + b = 0 14. A Tóm tắt lý thuyết 14. B Bài tập và các dạng toán 14. + Dạng 1. Sử dụng các phép biến đổi thường gặp để giải một số phương trình đơn giản 14. + Dạng 2. Phương trình có chứa tham số 18. + Dạng 3. Tìm điều kiện để biểu thức chứa ẩn ở mẫu xác định 19. C Bài tập về nhà 19. §4 – Phương trình tích 22. A TÓM TẮT LÝ THUYẾT 22. B BÀI TẬP VÀ CÁC DẠNG TOÁN 22. + Dạng 1. Giải phương trình tích 22. + Dạng 2. Giải phương trình đưa về phương trình tích 24. C BÀI TẬP VỀ NHÀ 28. §5 – Phương trình chứa ẩn ở mẫu 30. A TÓM TẮT LÝ THUYẾT 30. B BÀI TẬP VÀ CÁC DẠNG TOÁN 31. + Dạng 1. Tìm điều kiện xác định của biểu thức 31. + Dạng 2. Giải phương trình chứa ẩn ở mẫu 32. C BÀI TẬP VỀ NHÀ 36. §6 – Giải bài toán bằng cách lập phương trình 38. A TÓM TẮT LÝ THUYẾT 38. B BÀI TẬP VÀ CÁC DẠNG TOÁN 38. + Dạng 1. Bài toán liên quan đến tìm số 38. + Dạng 2. Bài toán liên quan đến tỉ số phần trăm 39. + Dạng 3. Bài toán liên quan đến tỉ số phần trăm 40. + Dạng 4. Bài toán liên quan đến công việc làm chung, làm riêng 41. + Dạng 5. Bài toán liên quan đến tính tuổi 42. C BÀI TẬP VỀ NHÀ 43. §7 – ÔN TẬP CHƯƠNG III 45. A KIẾN THỨC TRỌNG TÂM 45. B CÁC DẠNG TOÁN 45. §8 – Liên hệ giữa thứ tự và phép cộng 51. A Tóm tắt lý thuyết 51. B Bài tập và các dạng toán 52. + Dạng 1. Sắp xếp thứ tự các số trên trục số. Biểu diễn mối quan hệ giữa các tập số 52. + Dạng 2. Xét tính đúng sai của khẳng định cho trước 53. + Dạng 3. So sánh 54. C Bài tập về nhà 54. §9 – Liên hệ giữa thứ tự và phép nhân 56. A Tóm tắt lý thuyết 56. B Bài tập và các dạng toán 56. + Dạng 1. Xét tính đúng sai của khẳng định cho trước 56. + Dạng 2. So sánh 57. C Bài tập về nhà 58. §10 – Bất phương trình một ẩn 59. A Tóm tắt lý thuyết 59. B Bài tập và các dạng toán 60. + Dạng 1. Kiểm tra x = a có là nghiệm của bất phương trình hay không? 60. + Dạng 2. Viết bằng kí hiệu tập hợp và biểu diễn tập nghiệm của bất phương trình trên trục số 61. C Bài tập về nhà 62. §11 – Bất phương trình bậc nhất một ẩn 63. A TÓM TẮT LÝ THUYẾT 63. B BÀI TẬP VÀ CÁC DẠNG TOÁN 63. + Dạng 1. Nhận dạng bất phương trình bậc nhất một ẩn 63. + Dạng 2. Giải bất phương trình 64. + Dạng 3. Biễu diển tập nghiệm trên trục số 67. + Dạng 4. Bất phương trình tương đương 69. + Dạng 5. Giải bài toán bằng cách lập phương trình 70. C Bài tập về nhà 71. §12 – Phương trình chứa dấu giá trị tuyệt đối 75. A TÓM TẮT LÝ THUYẾT 75. B BÀI TẬP VÀ CÁC DẠNG TOÁN 75. + Dạng 1. Rút gọn biểu thức chứa dấu giá trị tuyệt đối 75. + Dạng 2. Giải các phương trình chứa giá trị tuyêt đối 76. C BÀI TẬP VỀ NHÀ 85. §13 – ÔN TẬP CHƯƠNG IV 88. A Trọng tâm kiến thức 88. B Các dạng bài tập và phương pháp giải 88. + Dạng 1. Chứng minh bất đẳng thức 88. + Dạng 2. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức f(x) 89. + Dạng 3. Giải bất phương trình 90. + Dạng 4. Giải phương trình chứa dấu giá trị tuyệt đối 92. C BÀI TẬP VỀ NHÀ 103. §14 – Định lý Ta-lét 105. A Tóm tắt lý thuyết 105. B Bài tập và các dạng toán 106. + Dạng 1. Viết tỉ số các cặp đoạn thẳng hoặc tính tỉ số của hai đoạn thẳng 106. + Dạng 2. Sử dụng định lý Ta-lét để tính độ dài đoạn thẳng hoặc chứng minh đoạn thẳng tỉ lệ 107. C Bài tập về nhà 109. D BÀI TẬP TỰ LUYỆN 110. §15 – Định lý đảo và hệ quả của định lý Ta-lét 111. A Tóm tắt lý thuyết 111. B Bài tập và các dạng toán 112. + Dạng 1. Sử dụng hệ quả của định lý Ta-lét để tính độ dài đoạn thẳng 112. + Dạng 2. Sử dụng định lý Ta-lét đảo để chứng minh các đường thẳng song song 113. + Dạng 3. Sử dụng hệ quả định lý Ta-lét để chứng minh các hệ thức, các đoạn thẳng bằng nhau 114. C Bài tập về nhà 115. D BÀI TẬP TỰ LUYỆN 117. §16 – Tính chất của đường phân giác của tam giác 120. A Tóm tắt lý thuyết 120. B Bài tập và các dạng toán 121. + Dạng 1. Sử dụng tính chất đường phân giác của tam giác để tính độ dài đoạn thẳng 121. + Dạng 2. Sử dụng tính chất đường phân giác của tam giác để tính tỉ số, chứng minh các hệ thức, các đoạn thẳng bằng nhau, các đường thẳng song song 122. C Bài tập về nhà 124. D BÀI TẬP TỰ LUYỆN 126. §17 – Khái niệm hai tam giác đồng dạng 128. A Tóm tắt lý thuyết 128. B Bài tập và các dạng toán 129. + Dạng 1. Chứng minh hai tam giác đồng dạng 129. + Dạng 2. Tìm tỉ số đồng dạng, tính độ dài cạnh, chứng minh đẳng thức cạnh thông qua tam giác đồng dạng 130. C Bài tập về nhà 131. D BÀI TẬP TỰ LUYỆN 133. §18 – Trường hợp đồng dạng thứ nhất 135. A Tóm tắt lý thuyết 135. B Bài tập và các dạng toán 135. + Dạng 1. Chứng minh hai tam giác đồng dạng 135. + Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau 136. C Bài tập về nhà 137. D BÀI TẬP TỰ LUYỆN 138. §19 – Trường hợp đồng dạng thứ hai 139. A Tóm tắt lý thuyết 139. B Bài tập và các dạng toán 140. + Dạng 1. Chứng minh hai tam giác đồng dạng 140. + Dạng 2. Sử dụng trường hợp đồng dạng thứ hai để tính độ dài cạnh hoặc chứng minh các góc bằng nhau 141. C Bài tập về nhà 142. D BÀI TẬP TỰ LUYỆN 144. §20 – Trường hợp đồng dạng thứ ba 146. A Tóm tắt lý thuyết 146. B Bài tập và các dạng toán 146. + Dạng 1. Chứng minh hai tam giác đồng dạng 146. + Dạng 2. Sử dụng trường hợp đồng dạng thứ ba để tính độ dài các cạnh, chứng minh hệ thức cạnh, hoặc chứng minh các góc bằng nhau 147. C Bài tập về nhà 148. D BÀI TẬP TỰ LUYỆN 149. §21 – Các trường hợp đồng dạng của tam giác vuông 151. A Tóm tắt lý thuyết 151. B Bài tập và các dạng toán 152. + Dạng 1. Chứng minh hai tam giác vuông đồng dạng 152. + Dạng 2. Sử dụng trường hợp đồng dạng của tam giác vuông tính độ dài cạnh, chứng minh hệ thức cạnh hoặc chứng minh các góc bằng nhau 153. + Dạng 3. Tỉ số diện tích của hai tam giác đồng dạng 154. C Bài tập về nhà 155. D BÀI TẬP TỰ LUYỆN 156. §22 – ÔN TẬP CHƯƠNG III 158. A Tóm tắt lý thuyết 158. B Bài tập và các dạng toán 158. C Bài tập về nhà 161. D Đề kiểm tra chương III 163. §23 – Hình hộp chữ nhật 167. A Tóm tắt lý thuyết 167. B Bài tập và các dạng toán 168. + Dạng 1. Nhận biết các đỉnh, các cạnh và các mặt của hình hộp chữ nhật 168. + Dạng 2. Nhận biết vị trí tương đối của hai đường thẳng, của đường thẳng với mặt phẳng và của hai mặt phẳng của hình hộp chữ nhật 170. + Dạng 3. Tính toán các số liệu liên quan đến cạnh, mặt của hình hộp chữ nhật 171. C Bài tập về nhà 173. §24 – Thể tích của hình hộp chữ nhật 175. A Tóm tắt lý thuyết 175. B Bài tập và các dạng toán 175. + Dạng 1. Nhận biết quan hệ vuông góc giữa đường thẳng và mặt phẳng trong hình hộp chữ nhật 175. + Dạng 2. Tính thể tích hình hộp chữ nhật và các bài toán liên quan đến cạnh và mặt của hình hộp chữ nhật 176. C Bài tập về nhà 178. §25 – Hình lăng trụ đứng 179. A Tóm tắt lý thuyết 179. B Bài tập và các dạng toán 180. + Dạng 1. Xác định các đỉnh, các cạnh, các mặt và mối quan hệ giữa các cạnh với nhau của hình lăng trụ đứng 180. + Dạng 2. Tính độ dài các cạnh và các đoạn thẳng khác trong hình lăng trụ đứng 183. C Bài tập về nhà 184. §26 – Diện tích xung quanh và thể tích hình lăng trụ đứng 187. A Tóm tắt lý thuyết 187. B Bài tập và các dạng toán 187. + Dạng 1. Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình lăng trụ đứng 187. + Dạng 2. Một số bài toán thực tế trong cuộc sống liên quan đến lăng trụ đứng 189. C Bài tập về nhà 190. §27 – Hình chóp đều và hình chóp cụt đều 193. A Tóm tắt lí thuyết 193. B Bài tập và các dạng toán 195. + Dạng 1. Nhận biết các kiến thức cơ bản hình chóp đều 195. + Dạng 2. Tính độ dài các cạnh của hình chóp đều 196. C Bài tập về nhà 197. §28 – Diện tích xung quanh và thể tích của hình chóp đều 198. A Tóm tắt lí thuyết 198. B Bài tập và các dạng toán 199. + Dạng 1. Các bài toán về diện tích xung quanh, diện tích toàn phần và thể tích của hình chóp đều 199. + Dạng 2. Các bài toán cơ bản về mối quan hệ giữa hình lập phương, hình hộp chữ nhật với hình chóp đều 201. C Bài tập về nhà 202. §29 – Ôn tập chương 4 203. A Tóm tắt lí thuyết 203. B Bài tập và các dạng toán 203. C Bài tập về nhà 206. §30 – Đề kiểm tra chương 4 207. A Đề số 1 207. B Đề số 2 210.

Nguồn: toanmath.com

Đọc Sách

Các chuyên đề lớp 8 môn Toán (tập một) Phạm Đình Quang
Nội dung Các chuyên đề lớp 8 môn Toán (tập một) Phạm Đình Quang Bản PDF - Nội dung bài viết Các chuyên đề lớp 8 môn Toán (tập một) của Phạm Đình Quang Các chuyên đề lớp 8 môn Toán (tập một) của Phạm Đình Quang Tài liệu "Các chuyên đề lớp 8 môn Toán (tập một)" bao gồm 229 trang, được biên soạn bởi thầy giáo Phạm Đình Quang. Đây là một tuyển tập các chuyên đề Toán dành cho học sinh khối lớp 8, nhằm giúp họ tham khảo khi học tập chương trình Toán lớp 8 trong giai đoạn học kì 1. Mục lục của tài liệu được chia thành hai phần chính. Phần I là Đại số, bao gồm nhiều chương như Phép Nhân và Phép Chia Các Đa Thức, Phân Thức Đại Số, và nhiều bài tập minh họa. Phần II là Hình Học, bao gồm các chuyên đề về Tứ Giác, Đa Giác, Diện Tích Đa Giác và một số đề thi tham khảo. Từng chương được trình bày rõ ràng và logic, với các phần Tóm Tắt Lý Thuyết giúp học sinh hiểu rõ vấn đề. Bên cạnh đó, có các bài tập cụ thể để học sinh rèn luyện và kiểm tra kiến thức của mình. Ngoài ra, tài liệu cũng cung cấp các đề thi tham khảo giúp học sinh ôn tập và chuẩn bị cho kỳ thi. Tổng thể, "Các chuyên đề lớp 8 môn Toán (tập một)" là một tài liệu hữu ích cho học sinh lớp 8 trong việc nắm vững kiến thức Toán và chuẩn bị tốt cho các kỳ thi sắp tới. Việc biên soạn kỹ lưỡng và phân chia chương mục rõ ràng giúp tạo điều kiện tốt cho việc học tập và ôn luyện.
Phân dạng và bài tập lớp 8 môn Toán
Nội dung Phân dạng và bài tập lớp 8 môn Toán Bản PDF - Nội dung bài viết Phân dạng và bài tập lớp 8 môn ToánI. Đại sốChương 1: Phép nhân và phép chia các đa thứcChương 2: Phân thức đại sốII. Hình họcChương 1: Tứ giácChương 2: Đa giác - Diện tích đa giác Phân dạng và bài tập lớp 8 môn Toán Tài liệu này bao gồm 106 trang, được tổng hợp bởi thầy giáo Võ Hoàng Nghĩa và cô giáo Nguyễn Thị Hồng Loan, chủ yếu tập trung vào phân dạng và bài tập Toán cho học sinh lớp 8. Cụ thể, nội dung của sách được chia thành các phần sau: I. Đại số Chương 1: Phép nhân và phép chia các đa thức Đồng thời học sinh sẽ tìm hiểu về cách nhân đơn thức với đa thức và nhân đa thức với đa thức. Cung cấp tóm tắt về lí thuyết và bài tập áp dụng cho các dạng bài tập như nhân đơn thức với đa thức, nhân đa thức với đa thức, chứng minh biểu thức và tìm x. Chương 2: Phân thức đại số Học sinh sẽ được hướng dẫn cách tìm điều kiện để phân thức có nghĩa và bài tập liên quan đến rút gọn phân thức. Bao gồm cả các phép toán về phân thức như qui đồng mẫu thức, cộng trừ phân thức, nhân chia phân thức và tính giá trị của một phân thức. II. Hình học Chương 1: Tứ giác Nhắc lại về các tính chất cơ bản của tứ giác và bài tập áp dụng để tính toán các góc và cạnh của tứ giác. Chương 2: Đa giác - Diện tích đa giác Học sinh sẽ được ôn tập về đa giác và giải các bài tập tự luận liên quan đến diện tích đa giác. Đây là một tài liệu học hữu ích, được biên soạn một cách cụ thể và dễ hiểu bởi thầy giáo và cô giáo có kinh nghiệm trong lĩnh vực giáo dục. Các bài tập cũng được sắp xếp logic và có đa dạng để học sinh có thể nắm vững kiến thức và rèn luyện kỹ năng Toán của mình.
Phát triển tư duy sáng tạo giải toán Đại số 8
Nội dung Phát triển tư duy sáng tạo giải toán Đại số 8 Bản PDF - Nội dung bài viết Phát triển tư duy sáng tạo giải toán Đại số 8 Phát triển tư duy sáng tạo giải toán Đại số 8 Tài liệu "Phát triển tư duy sáng tạo giải toán Đại số 8" có 352 trang, được biên soạn bởi tác giả Bùi Văn Tuyên (chủ biên), cùng với Nguyễn Đức Trường và Nguyễn Tam Sơn. Tài liệu tập hợp các chuyên đề Đại số 8, nhằm giúp học sinh phát triển tư duy sáng tạo khi giải các bài toán Đại số cấp 8. Bên cạnh đó, chương I của tài liệu được chuẩn bị chi tiết và cụ thể để giúp học sinh nắm vững kiến thức cơ bản trong môn Đại số.
Phát triển tư duy sáng tạo giải toán Hình học 8
Nội dung Phát triển tư duy sáng tạo giải toán Hình học 8 Bản PDF - Nội dung bài viết Phát triển tư duy sáng tạo giải toán Hình học 8 Phát triển tư duy sáng tạo giải toán Hình học 8 Tài liệu "Phát triển tư duy sáng tạo giải toán Hình học 8" bao gồm 315 trang và đã được biên soạn bởi tác giả Bùi Văn Tuyên (chủ biên) và tác giả Nguyễn Đức Trường. Được biết, đây là một tuyển tập các chuyên đề Hình học 8 giúp học sinh phát triển tư duy sáng tạo trong việc giải các bài toán Hình học 8. Mục lục của tài liệu bao gồm nhiều chương, trong đó chương I là một trong những chương quan trọng, mang đến kiến thức căn bản và bước đầu để học sinh tiếp cận với môn Hình học một cách hiệu quả.