Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm học 2018 - 2019 trường THPT Nguyễn Thị Minh Khai - Hà Nội

Đề thi HK1 Toán 11 năm học 2018 – 2019 trường THPT Nguyễn Thị Minh Khai – Hà Nội mã đề 485 được biên soạn nhằm tổng kết lại các kiến thức Toán 11 mà học sinh đã được học trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề có cấu trúc trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 35 câu, phần tự luận gồm 4 câu, tổng thời gian làm bài là 90 phút. Trích dẫn đề thi HK1 Toán 11 năm học 2018 – 2019 trường THPT Nguyễn Thị Minh Khai – Hà Nội : + Tìm mệnh đề đúng trong các mệnh đề sau: A. Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với mọi đường thẳng nằm trong (β). B. Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với (β). C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt (α) và (β) thì (α) và (β) song song với nhau. D. Qua một điểm nằm ngoài mặt phẳng cho trước ta dựng được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó. [ads] + Một giá sách có hai tầng. Tầng 1 có 10 quyển sách Toán khác nhau và 5 quyển sách Anh khác nhau. Tầng 2 có 8 quyển sách toán khác nhau và 6 quyển sách Văn khác nhau. Bạn An chọn ngẫu nhiên mỗi tầng 3 quyển sách. Xác suất để ban An chọn được 6 quyển sách không cùng môn là: + Một đề thi HK1 Toán 11 có 35 câu hỏi trắc nghiệm khách quan, mỗi câu hỏi có 4 phương án lựa chọn, trong đó chỉ có một phương án đúng. Khi thi, một học sinh đã chọn ngẫu nhiên một phương án trả lời với mỗi câu của đề thi đó. Xác suất để học sinh đó trả lời đúng cả 35 câu là?

Nguồn: toanmath.com

Đọc Sách

Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Nguyễn Thị Minh Khai - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Cho hình chóp S ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SO. a) Tìm giao tuyến của hai mặt phẳng MAD và MBC. b) Gọi N là điểm thuộc cạnh BD thỏa BN ND 3. Chứng minh rằng: MN SAD. c) Gọi P là trung điểm của cạnh OB, Q là điểm thuộc cạnh SB thỏa SQ QB 3. Chứng minh rằng: AMN CPQ. d) Gọi I là giao điểm của SD và CMQ. Tính tỉ số SI ID. + Chọn ngẫu nhiên hai số nguyên dương phân biệt thuộc đoạn 1913 2023. Tính xác suất để tích của chúng là một số chẵn. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n ta luôn có: 1 3 3 3 9 3 2.
Đề cuối kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Lương Thế Vinh - Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Lương Thế Vinh, thị xã Điện Bàn, tỉnh Quảng Nam; đề thi được biên soạn theo cấu trúc 50% trắc nghiệm + 50% tự luận, phần trắc nghiệm gồm 15 câu, phần tự luận gồm 04 câu, thời gian làm bài 60 phút (không kể thời gian giao đề); đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận mã đề 101 102 103 104 105 106 107 108. Trích dẫn Đề cuối kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Lương Thế Vinh – Quảng Nam : + Hai thí sinh A và B tham gia một buổi thi vấn đáp. Cán bộ coi thi đưa cho mỗi thí sinh một bộ câu hỏi thi gồm 10 câu hỏi khác nhau, được đựng trong 10 phong bì dán kín, có hình thức giống hệt nhau, mỗi phong bì đựng một câu hỏi. Thí sinh chọn 4 phong bì trong đó để xác định câu hỏi thi của mình. Biết rằng bộ 10 câu hỏi dành cho hai thí sinh là như nhau. Tính xác suất để 4 câu hỏi A chọn và 4 câu hỏi B chọn có ít nhất một câu hỏi giống nhau. + Cho hình chóp S.ABCD, ABCD là hình thang, đáy lớn AD = 2BC. Gọi M, N lần lượt là trung điểm của AD, CD. a/. Chứng minh: MN//(SAC). b/. Gọi K SB sao cho KB KS 2. Xác định giao điểm của đường thẳng SA và (MNK). c/. Gọi G là trọng tâm tam giác CDM. Chứng minh KG//SD. + Đội A gồm hai xạ thủ cùng thi bắn vào một mục tiêu. Xác suất để xạ thủ thứ 1 bắn trúng mục tiêu là 0,5. Xác suất để xạ thủ thứ 2 bắn trúng mục tiêu là 0,4. Biết rằng đội A thắng khi cả hai xạ thủ đều bắn trúng mục tiêu. Tính xác suất để đội A không thắng.
Đề học kỳ 1 Toán 11 (chuyên) năm 2022 - 2023 trường chuyên Hà Nội - Amsterdam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 (chuyên Toán) năm học 2022 – 2023 trường THPT chuyên Hà Nội – Amsterdam; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn Đề học kỳ 1 Toán 11 (chuyên) năm 2022 – 2023 trường chuyên Hà Nội – Amsterdam : + Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = 2^x − 2^-x trên đoạn [0;1]. + Cho hình lăng trụ đứng OAB.O’A’B’ có đáy là các tam giác vuông cân, OA = OB = a và AA’ = a2. Tính diện tích thiết diện thu được khi cắt lăng trụ bởi mặt phẳng đi qua trung điểm của OA và vuông góc với A’B. + Cho hàm số f: N* → N* có tính chất: “Với mỗi hai số nguyên dương m và n, đều có m | f(n) khi và chỉ khi f(m) | n”. Chứng minh rằng: a) f(1) = 1 và f(f(n)) = n với mỗi số nguyên dương n. b) với mỗi số nguyên tố p, thì f(p) cũng là một số nguyên tố.
Đề cuối học kì 1 Toán 11 năm 2022 - 2023 trường THPT Ten Lơ Man - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra đánh giá cuối học kì 1 môn Toán 11 năm học 2022 – 2023 trường THPT Ten Lơ Man, thành phố Hồ Chí Minh; đề thi được biên soạn theo cấu trúc đề tự luận 100%, thời gian làm bài 90 phút. Trích dẫn Đề cuối học kì 1 Toán 11 năm 2022 – 2023 trường Ten Lơ Man – TP HCM : + Có 13 tấm thẻ đánh số thứ tự từ 1 đến 13, chọn ngẫu nhiên 3 tấm. Tính xác suất chọn được ba tấm thẻ có tổng các số ghi trên thẻ là một số lẻ. + Trong một môn học, thầy giáo có 20 câu hỏi khác nhau trong đó có 10 câu hỏi dễ, 6 câu hỏi trung bình và 4 câu hỏi khó. Từ 20 câu hỏi đó lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi, sao cho đề kiểm tra phải có đủ ba loại câu hỏi và có 3 câu hỏi dễ. + Cho hình chóp S.ABCD, đáy ABCD là bình hành, O là giao của AC và BD. Gọi G là trọng tâm tam giác ACD, điểm M thuộc đoạn thẳng SD sao cho 3SM = SD, điểm N là trung điểm của SA a. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD) b. Chứng minh MG song song với mặt phẳng (SAC) c. Tìm thiết diện của (MNG) và hình chóp S.ABCD.