Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Vở bài tập Toán 9 tập 2 phần Đại số

Tài liệu gồm 222 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 2 phần Đại số. CHƯƠNG 3 . HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Bài 1. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1: Nhận biết hàm số bậc nhất y = ax + b. Dạng 2: Kiểm tra các cặp số cho trước có là nghiệm của phương trình bậc nhất hai ẩn không? Dạng 3: Tìm một nghiệm của phương trình bậc nhất hai ẩn. Dạng 4: Viết nghiệm tổng quát và vẽ đường thẳng biểu diễn tập nghiệm của phương trình. Dạng 5: Tìm điều kiện của tham số để đường thẳng đi qua một điểm cho trước. Dạng 6: Vẽ cặp đường thẳng và tìm giao điểm của chúng. Bài 2. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1: Kiểm tra cặp số cho trước có là nghiệm của hệ phương trình đã cho hay không? Dạng 2: Đoán nhận số nghiệm của hệ phương trình. Dạng 3: Tìm nghiệm của hệ bằng phương pháp hình học. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Dạng 5: Vị trí tương đối của hai đường thẳng. Bài 3. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ. Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình quy về phương trình bậc nhất hai ẩn. Dạng 3: Sử dụng đặt ẩn phụ giải hệ phương trình quy về phương trình bậc nhất hai ẩn. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Bài 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ. Dạng 1: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Dạng 3: Giải phương trình bằng phương pháp đặt ẩn phụ. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Bài 5. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán về chuyển động. Bài 6. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH (TT). Dạng 1: Bài toán về công việc làm chung và làm riêng. Dạng 2: Bài toán về năng suất lao động. Dạng 3: Bài toán về tỉ lệ phần trăm. Dạng 4: Bài toán về nội dung hình học. Dạng 5: Bài toán về nội dung sắp xếp chia đều. ÔN TẬP CHƯƠNG III. ĐỀ KIỂM TRA CHƯƠNG 3 – MÔN TOÁN 9 – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG 3 – MÔN TOÁN 9 – ĐỀ SỐ 2. CHƯƠNG 4 . HÀM SỐ Y = AX2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. Bài 1. HÀM SỐ Y = AX2 (A KHÁC 0). Dạng 1: Tính giá trị của hàm số tại một điểm cho trước. Dạng 2: Xét tính đồng biến, nghịch biến của hàm số. Bài 2. ĐỒ THỊ CỦA HÀM SỐ Y = AX2 (A KHÁC 0). Dạng 1: Vẽ đồ thị hàm số. Dạng 2: Tọa độ giao điểm của Parabol và đường thẳng. Bài 3. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. Dạng 1: Nhận dạng và tìm hệ số của phương trình bậc hai một ẩn. Dạng 2: Sử dụng các phép biến đổi, giải phương trình bậc hai một ẩn cho trước. Bài 4. CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI. Dạng 1: Sử dụng công thức nghiệm để giải phương trình bậc hai một ẩn cho trước. Dạng 2: Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. Dạng 3: Giải và biện luận phương trình dạng bậc hai. Dạng 4: Một số bài toán về tính số nghiệm của phương trình bậc hai. Bài 5. CÔNG THỨC NGHIỆM THU GỌN. Dạng 1: Sử dụng công thức nghiệm thu gọn, giải phương trình bậc hai. Dạng 2: Sử dụng công thức nghiệm thu gọn, xác định số nghiệm của phương trình bậc hai. Dạng 3: Giải và biện luận phương trình dạng bậc hai. Bài 6. HỆ THỨC VI-ÉT VÀ ỨNG DỤNG. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng cách nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích của chúng. Dạng 4: Phân tích tam giác bậc hai thành nhân tử. Dạng 5: Xét dấu các nghiệm của phương trình bậc hai. Dạng 6: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Bài 7. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. Dạng 1: Giải phương trình trùng phương. Dạng 2: Giải phương trình chứa ẩn ở mẫu. Dạng 3: Giải phương trình tích. Dạng 4: Giải phương trình bằng phương pháp đặt ẩn phụ. Bài 8. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. Dạng 1: Toán có nội dung hình học. Dạng 2: Bài toán có quan hệ về số. Dạng 3: Bài toán về năng suất lao động. Dạng 4: Bài toán về công việc làm chung, làm riêng. Dạng 5: Bài toán về chuyển động. Dạng 6: Bài toán chuyển động có vận tốc cản. Dạng 7: Các dạng toán khác. ÔN TẬP CHƯƠNG IV. ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ SỐ 2.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác
Nội dung Chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác Bản PDF - Nội dung bài viết Chuyên đề tính diện tích tam giác, diện tích tứ giác Chuyên đề tính diện tích tam giác, diện tích tứ giác Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, gồm 14 trang, nhằm tổng hợp kiến thức trọng tâm về tính diện tích tam giác, diện tích tứ giác bằng cách sử dụng các tỉ số lượng giác. Đây là tài liệu hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. CÁC KIẾN THỨC CẦN NHỚ Trong tam giác vuông, diện tích S được tính bằng công thức S = 1/2ah, trong đó a là độ dài một cạnh của tam giác, h là chiều cao tương ứng với cạnh đó. Bên cạnh đó, tài liệu này cũng hướng dẫn vận dụng các tỉ số lượng giác và hệ thức về cạnh, góc trong tam giác vuông để xây dựng thêm các công thức tính diện tích tam giác, tứ giác. B. BÀI TẬP MINH HỌA Tài liệu cung cấp các ví dụ minh họa về cách tính diện tích tam giác, tứ giác, chứng minh các hệ thức, tính số đo góc và độ dài các cạnh. C. BÀI TẬP TỰ LUYỆN Phần này bao gồm các bài tập tự luyện với các dạng bài tập đa dạng như tính diện tích, chứng minh hệ thức, tính số đo góc và độ dài cạnh. Học sinh có thể sử dụng phần này để ôn tập và nâng cao kiến thức của mình. D. HƯỚNG DẪN GIẢI Cuối cùng, tài liệu cung cấp hướng dẫn giải chi tiết cho các bài tập trong phần tự luyện, giúp học sinh hiểu rõ cách giải từng bước và áp dụng vào bài tập tương tự.
Chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời
Nội dung Chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời Bản PDF - Nội dung bài viết Chuyên đề ứng dụng thực tế tỉ số lượng giác của góc nhọn ngoài trời Chuyên đề ứng dụng thực tế tỉ số lượng giác của góc nhọn ngoài trời Tài liệu này bao gồm 13 trang được viết bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức về tỉ số lượng giác của góc nhọn và hướng dẫn cách áp dụng chúng vào thực tế khi thực hành ngoài trời. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 5. A. Kiến thức cần nhớ: Tài liệu này giúp học sinh vận dụng linh hoạt kiến thức về tỉ số lượng giác của góc nhọn vào việc giải các bài tập thực tế. B. Bài tập minh họa cơ bản nâng cao: I. Bài tập củng cố kiến thức bản chất toán: Bài tập trong tài liệu giúp học sinh củng cố và hiểu rõ hơn về tỉ số lượng giác của góc nhọn. II. Bài tập vận dụng vào thực tế: Tài liệu cũng cung cấp các bài tập giúp học sinh áp dụng kiến thức về tỉ số lượng giác vào các tình huống thực tế, từ đó nắm vững và hiểu sâu hơn về chủ đề này.
Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông
Nội dung Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông Bản PDF - Nội dung bài viết Tài liệu Chuyên đề về cạnh và góc trong tam giác vuông Tài liệu Chuyên đề về cạnh và góc trong tam giác vuông Tài liệu này có tổng cộng 52 trang và được biên soạn bởi tác giả Toán Học Sơ Đồ. Nội dung của tài liệu tập trung vào việc tổng hợp kiến thức quan trọng về cạnh và góc trong tam giác vuông, cung cấp phân dạng và hướng dẫn cách giải các dạng bài tập tự luận & trắc nghiệm liên quan đến chuyên đề này. Tài liệu này sẽ hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 9, đặc biệt là trong bài số 4 về tam giác vuông. Nội dung cụ thể bao gồm: KIẾN THỨC CẦN NHỚ: I. Định lí cơ bản: Trong một tam giác vuông, mỗi cạnh góc vuông bằng: Cạnh huyền nhân với sin góc đối hoặc nhân với cosin góc kề. Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với cotang góc kề. II. Giải tam giác vuông: Là tìm tất cả các cạnh và góc của tam giác vuông khi biết hai yếu tố của nó (trong đó ít nhất có một yếu tố về độ dài). CÁC DẠNG BÀI BẢN CƠ BẢN VÀ NÂNG CAO BÀI TẬP TỰ LUYỆN TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ Tài liệu này cung cấp cho bạn những kiến thức cơ bản và nâng cao về cạnh và góc trong tam giác vuông, giúp bạn nắm vững và áp dụng chúng vào việc giải các bài tập một cách hiệu quả. Hãy cùng tìm hiểu và rèn luyện kỹ năng qua tài liệu này để đạt được kết quả tốt trong môn Toán!
Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông
Nội dung Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông Bản PDF - Nội dung bài viết Tài liệu "Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông" Tài liệu "Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông" Tài liệu này gồm 30 trang, đã được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức quan trọng về tỉ số lượng giác của góc nhọn và hệ thức về cạnh và góc trong tam giác vuông. Được xem là công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập môn Hình học 9 chương 1. A. KIẾN THỨC CẦN NHỚ Trong phần này, tài liệu tập trung vào việc giải thích các kiến thức cơ bản về tỉ số lượng giác, hệ thức về cạnh và góc trong tam giác vuông. B. CÁC DẠNG BÀI TẬP CƠ BẢN VÀ NÂNG CAO 1. Dạng 1: Các bài toán tính toán: Tài liệu sẽ hướng dẫn học sinh về cách giải các bài tập tính toán với các bước cụ thể như đặt độ dài cạnh, góc bằng ẩn và giải phương trình để tìm kết quả cuối cùng. 2. Dạng 2: Chứng minh đẳng thức, mệnh đề: Hướng dẫn cách biến đổi mệnh đề về dạng đẳng thức và chứng minh các vế bằng nhau thông qua việc sử dụng hệ thức lượng và kiến thức đã học. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ Phần này cung cấp các câu hỏi trắc nghiệm để học sinh tự kiểm tra kiến thức và kỹ năng của mình. D. HƯỚNG DẪN GIẢI Cuối cùng, tài liệu sẽ cung cấp hướng dẫn chi tiết cách giải các bài tập, giúp học sinh hiểu rõ hơn về cách áp dụng kiến thức vào thực hành.