Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 12 lần 2 năm 2019 - 2020 trường THPT Đồng Đậu - Vĩnh Phúc

Ngày … tháng 11 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi Toán 12 cấp trường lần thứ 2 năm học 2019 – 2020, nhằm tiếp tục tuyển chọn các em học sinh giỏi Toán 12 vào đội tuyển của trường, đồng thời giúp đội tuyển nhà trường rèn luyện, hướng đến kỳ thi học sinh giỏi Toán THPT cấp tỉnh. Đề thi HSG Toán 12 lần 2 năm học 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc được biên soạn theo hình thức tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 180 phút, nội dung đề bao quát chương trình Toán 10, Toán 11 và Toán 12, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán 12 lần 2 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc : + Một mảnh đất hình chữ nhật ABCD có chiều dài AB = 25m, chiều rộng AD = 20m được chia thành hai phần bằng nhau bởi vạch chắn MN (M, N lần lượt là trung điểm BC và AD). Một đội xây dựng làm một con đường đi từ A đến C qua vạch chắn MN, biết khi làm đường trên miền ABMN mỗi giờ làm được 15m và khi làm trong miền CDNM mỗi giờ làm được 30m. Tính thời gian ngắn nhất mà đội xây dựng làm được con đường đi từ A đến C. [ads] + Trong cuộc thi: “Thiết kế và trình diễn các trang phục dân tộc” do Đoàn trường THPT Đồng Đậu tổ chức vào tháng 11 năm 2019 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó có 4 tiết mục khối 12, có 5 tiết mục khối 11và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng 26 tháng 3. Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12. + Cho hình hộp đứng ABCD.A1B1C1D1 có các cạnh AB = AD = 2, AA1 = √3 và góc BAD = 60 độ. Gọi M, N lần lượt là trung điểm của các cạnh A1D1 và A1B1. Chứng minh rằng AC1 vuông góc với mặt phẳng (BDMN). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3, BC = 6, mặt phẳng (SAB) vuông góc với đáy, các mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) các góc bằng nhau. Biết khoảng cách giữa hai đường thẳng SA và BD bằng 6. Tính thể tích khối chóp S.ABCD và cosin góc giữa hai đường thẳng SA và BD. + Trong mặt phẳng với hệ tọa độ (Oxy), cho tam giác ABC ngoại tiếp đường tròn tâm J(2;1). Biết đường cao xuất phát từ đỉnh A của tam giác ABC có phương trình: 2x + y – 10 = 0 và D(2;-4) là giao điểm thứ hai của AJ với đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết B có hoành độ âm và B thuộc đường thẳng có phương trình x + y + 7 = 0.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hưng Yên
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hưng Yên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên; kỳ thi được diễn ra trong hai ngày: ngày thi thứ nhất 28/08/2023 và ngày thi thứ hai: 29/08/2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Tam giác nhọn không cân ABC có trực tâm H và đường tròn ngoại tiếp (O), đường phân giác trong của góc BAC cắt BC tại K. Điểm Q nằm trên đường tròn (O) sao cho AQ vuông góc QK. Đường tròn ngoại tiếp tam giác AQH cắt AC, AB lần lượt tại Y, Z. Gọi T là giao điểm của BY và CZ, P là giao điểm của YZ và BC. a) Chứng minh rằng PZ/PY = BH/HC. b) Chứng minh rằng TH vuông góc KA. + Cho tam giác ABC nội tiếp đường tròn (O). Đường tròn nội tiếp (I) của tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Biết AI cắt BC tại S và cắt (O) tại điểm thứ hai là M. Các đường tròn ngoại tiếp tam giác BSM, CSM cắt ME, MF tương ứng tại K và L (K và L khác M). a) Chứng minh rằng bốn điểm I, L, S, K cùng nằm trên một đường tròn. b) Gọi T là giao điểm thứ hai của MD với (O). Chứng minh rằng đường tròn ngoại tiếp tam giác TKL tiếp xúc với (O). + Cô giáo có tất cả 2278 viên kẹo thuộc về k loại kẹo khác nhau. Cô chia cho các học sinh của mình mỗi người một số viên kẹo và không có học sinh nào nhận nhiều hơn một viên kẹo ở cùng một loại kẹo. Cô yêu cầu hai học sinh khác nhau bất kỳ so sánh các viên kẹo mình nhận được và viết số loại kẹo mà cả hai cùng có lên bảng. Biết rằng mỗi cặp học sinh bất kỳ đều được lên bảng đúng một lần. Gọi tổng các số được viết lên bảng là M. Xác định giá trị nhỏ nhất của M trong mỗi trường hợp sau: a) k = 67. b) k = 68.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT An Giang
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT An Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Bảy ngày 19 tháng 08 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT An Giang : + Cho đa thức P(x) = xn + 4 với n thuộc N. a. Với n = 4 hãy phân tích đa thức P(x) thành tích các đa thức với các hệ số đều là số nguyên. b. Tìm tất cả các giá trị n nguyên dương sao cho đa thức P(x) phân tích được thành tích của hai đa thức khác hằng số với hệ số là các số nguyên. + Hai kênh dẫn nước (P) và (Q) vuông góc nhau (như hình vẽ) chiều rộng của hai kênh lần lượt là a và b. Một thanh gỗ AB có thiết diện không đáng kể nổi trên mặt nước và trôi từ kênh (P) sang kênh (Q). Tìm độ dài lớn nhất của thanh gỗ AB sao cho thanh gỗ trôi qua được từ kênh (P) sang kênh (Q). + Tính theo n số các điểm trên mặt phẳng tọa độ Oxy có tọa độ (x;y) với x; y đều là số nguyên thỏa mãn |x| + |y| =< n với n là số tự nhiên cho trước.
Đề học sinh giỏi Toán cấp THPT năm 2022 2023 sở GD ĐT An Giang
Nội dung Đề học sinh giỏi Toán cấp THPT năm 2022 2023 sở GD ĐT An Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán cấp THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2023. Trích dẫn Đề học sinh giỏi Toán cấp THPT năm 2022 – 2023 sở GD&ĐT An Giang : + Cho hình thang ABCD vuông tại A và B cho AD = 2a; AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S bất kỳ. Gọi C’; D’ lần lượt là hình chiếu vuông góc của A trên SC; SD. a) Chứng minh rằng A; B; C’; D’ cùng thuộc một mặt phẳng. b) Chứng minh rằng C’D’ luôn đi qua một điểm cố định khi S thay đổi trên Ax. + Cho tập hợp các số có ba chữ số và tính chất sau: (1) Không có số nào chứa chữ số 0. (2) Tổng các chữ số của mỗi số là 9. (3) Hai số bất kỳ có chữ số hàng đơn vị khác nhau. (4) Chữ số hàng chục của hai số bất kỳ khác nhau. (5) Chữ số hàng trăm của hai số bất kỳ khác nhau. a) Tìm số phần tử của S là tập hợp các số có ba chữ số thỏa mãn (1) và (2). b) Tìm giá trị lớn nhất số phần tử của T các số có ba chữ số thỏa mãn (1) đến (5). + Cho tam giác đều ABC cạnh bằng a. Dựng tam giác A1B1C1 có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác A2B2C2 có các đỉnh là trung điểm của các cạnh của tam giác A1B1C1 … tam giác An+1Bn+1Cn+1 là trung điểm các cạnh của tam giác AnBnCn … Đặt p1; p2 … pn … và S1; S2 … Sn … lần lượt là chu vi và diện tích tam giác A1B1C1; A2B2C2 … AnBnCn … a) Tính (pn) và (Sn) theo a, n. b) Ký hiệu Pn = p1 + p2 + … + pn và Qn = S1 + S2 + … + Sn. Tính lim Pn và lim Qn.
Đề học sinh giỏi MTCT Toán THPT năm 2022 2023 sở GD ĐT Vĩnh Long
Nội dung Đề học sinh giỏi MTCT Toán THPT năm 2022 2023 sở GD ĐT Vĩnh Long Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp tỉnh giải toán bằng máy tính cầm tay môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi MTCT Toán THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Một người gửi triệu đồng vào ngân hàng với kì hạn tháng (quý), lãi suất một quý theo hình thức lãi kép. Sau đúng tháng, người đó lại gửi thêm triệu đồng với hình thức và lãi suất như trên. Hỏi sau năm tính từ lần gửi đầu tiên người đó nhận được số tiền gần với kết quả nào nhất? (làm tròn đến 1 chữ số thâp phân). + Cho tam giác ABC có AB 3 5 BC 5 3 CA 48. Gọi M là trung điểm của AC; N là điểm trên cạnh BC sao cho BC BN 3 và BM cắt AN tại I. Trên đường thẳng vuông góc với mặt phẳng ABC tại I, lấy điểm S sao cho SI 7. Tính gần đúng a) Độ dài các cạnh SA SB SC của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). b) Chiều cao BK của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). c) Bán kính R của mặt cầu ngoại tiếp tứ diện SABC (làm tròn đến 9 chữ số thâp phân). + Cho 2023 đường tròn đồng tâm nội tiếp trong 2023 hình vuông (dạng như hình vẽ). Tính gần đúng diện tích phần tô đậm, biết hình vuông lớn nhất có cạnh bằng 1 cm (làm tròn đến 5 chữ số thâp phân).