Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THCS - THPT Thái Bình - TP HCM

Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, ngày … tháng 05 năm 2019, trường THCS – THPT Thái Bình, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THCS – THPT Thái Bình – TP HCM có mã đề 174, đề thi có 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, phần trắc nghiệm chiếm 7,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THCS – THPT Thái Bình – TP HCM : + Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện |z + 3 – 4i| ≤ 9 là: A. hình tròn giới hạn bởi đường tròn tâm I (−3;4), bán kính R = 9, kể cả đường tròn đó. B. đường tròn tâm I (−3;4), bán kính R = 9. C. hình tròn giới hạn bởi đường tròn tâm I (3;-4), bán kính R = 9, kể cả đường tròn đó. D. hình tròn giới hạn bởi đường tròn tâm I (−3;4), bán kính R = 9, không kể đường tròn đó. + Trong không gian với hệ toạ độ (Oxyz), cho điểm A(1;2;-2) và mặt phẳng (P): 2x – 11y + 10z – 35 = 0 và. a) Viết phương trình tham số của đường thẳng OA. b) Tính khoảng cách từ A đến mặt phẳng (P). c) Viết phương trình mặt cẩu tâm A và tiếp xúc với mặt phẳng (P). + Tính diện tích hình phẳng giới hạn bởi đường cong (C ): y = x^3 – 3x và đường thẳng (d): y = x.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 12 năm học 2019 - 2020 sở GDĐT Lâm Đồng
Ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh lớp 12 trong giai đoạn cuối học kỳ 2 (HK2) năm học 2019 – 2020. Đề thi học kỳ 2 Toán 12 năm học 2019 – 2020 sở GD&ĐT Lâm Đồng mã đề 101 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, nội dung thi giới hạn trong các chủ đề: nguyên hàm, tích phân và ứng dụng, số phức, phương pháp tọa độ trong không gian, đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề thi học kỳ 2 Toán 12 năm học 2019 – 2020 sở GD&ĐT Lâm Đồng : + Đường cong trong hình bên có tên gọi là đường Lemmiscate. Trong mặt phẳng Oxy, phương trình của đường Lemmiscate đã cho là 16y^2 = x^2(25 – x^2). Thể tích vật thể tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đường cong đó quay quanh trục Ox bằng? [ads] + Cho số phức z = 1 + i. Trong mặt phẳng Oxy, gọi S là hình gồm tất cả các điểm biểu diễn của số phức w = a + bz + cz^2 với a, b, c là ba tham số thực thuộc đoạn [0;1]. Diện tích của hình S bằng? + Trong không gian Oxyz, cho hai điểm A(2;2;0), B(0;4;4) và mặt phẳng (P): x + y + z – 2 = 0. Trong tất cả các mặt cầu có tâm thuộc mặt phẳng (P) và đi qua hai điểm A, B, mặt cầu có bán kính nhỏ nhất bằng?
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Nguyễn Chí Thanh - TP HCM
Sáng thức Sáu ngày 26 tháng 06 năm 2020, trường THPT Nguyễn Chí Thanh, quận Tân Bình, thành phố Hồ Chí Minh tổ chức kì thi kiểm tra khảo sát chất lượng môn Toán đối với học sinh lớp 12 trong giai đoạn cuối học kì 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Nguyễn Chí Thanh – TP HCM được biên soạn theo dạng đề thi trắc nghiệm khách quan, đề gồm có 04 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Nguyễn Chí Thanh – TP HCM : + Trong không gian Oxyz, cho mặt phẳng (a): 2x – y + 2z – 7 = 0 và mặt cầu (S) có tâm I(-2;3;-2) bán kính R = 4. Từ một điểm M thuộc mặt phẳng (a) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại điểm N. Tính OM biết rằng MN = 2√5. + Xét các số phức z thỏa mãn |z + 2 – i| = 3. Biết rằng tập hợp các điểm biểu diễn các số phức w = (3 – 4i)z – 7i là một đường tròn tâm I, bán kính r. Khẳng định nào sau đây đúng? [ads] + Cho phần vật thể (X) giới hạn bởi hai mặt phẳng có phương trình x = 0 và x = 2. Cắt phần vật thể (X) bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (với 0 ≤ x ≤ 2), ta được thiết diện là một tam giác đều có độ dài cạnh bằng x√(2 – x). Thể tích V của phần vật thể (X) bằng?
Đề thi HK2 Toán 12 năm 2019 - 2020 trường THPT Lạng Giang 3 - Bắc Giang
Ngày … tháng 06 năm 2020, trường THPT Lạng Giang số 3, tỉnh Bắc Giang tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán lớp 12 năm học 2019 – 2020. Đề thi HK2 Toán 12 năm học 2019 – 2020 trường THPT Lạng Giang 3 – Bắc Giang mã đề 223 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 223, 234, 245, 256. Trích dẫn đề thi HK2 Toán 12 năm 2019 – 2020 trường THPT Lạng Giang 3 – Bắc Giang : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật; SA ⊥ (ABCD), AB = 3a, BC = 4a, SA = 5a. Mặt phẳng (P) đi qua A và vuông góc với SC chia khối chóp S.ABCD thành hai khối đa diện có thể tích lần lượt là V1 và V2, trong đó V1 là thể tích khối đa diện chứa đỉnh S. Tỉ số V1/V2 bằng? + Trong hệ tọa độ Oxyz cho a(1;-1;0) và A(−4;7;3), B(4;4;5). Giả sử M và N là hai điểm thay đổi trong mặt phẳng (Oxy) sao cho MN cùng hướng với a và MN = 5√2. Giá trị lớn nhất của |AM – BN| bằng? [ads] + Cho khối chóp S.ABC có SA = SB = SC = a, góc ASB = 60 độ, góc BSC = 90 độ, góc ASC = 120 độ. Gọi M và N lần lượt thuộc cạnh AB và cạnh SC sao cho CN/CS = AM/AB. Khi độ dài đoạn thẳng MN nhỏ nhất, tính thể tích V của khối chóp S.AMN.
Đề thi học kì 2 Toán 12 năm học 2019 - 2020 sở GDĐT Kon Tum
Tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Kon Tum tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán đối với học sinh lớp 12 trong giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 12 năm học 2019 – 2020 sở GD&ĐT Kon Tum mã đề 121 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 2 Toán 12 năm học 2019 – 2020 sở GD&ĐT Kon Tum : + Trong không gian Oxyz, cho các điểm A(1;0;0), B(0;b;0), C(0;0;c), trong đó b và c là các số hữu tỉ dương và mặt phẳng (P) có phương trình y – z + 1 = 0. Biết rằng mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ điểm O đến mặt phẳng (ABC) bằng 1/3. Giá trị b + c bằng? + Trong không gian Oxyz, cho ba điểm A(1;1;1), B(−1;2;1), C(3;6;-5). Gọi M(a;b;c) là điểm thuộc mặt phẳng (Oxy) thỏa MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất (với a, b, c là các số nguyên). Khi đó a + b + c bằng? [ads] + Cho các số phức z1 = -2 + i và z2 = 2 + i và số phức z thay đổi thỏa mãn |z – z1|^2 + |z – z2|^2. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z. Giá trị biểu thức M^2 – m^2 bằng?