Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa kỳ 2 Toán 9 năm 2021 - 2022 trường THCS Nguyễn Chí Diểu - TT Huế

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kỳ giữa học kỳ 2 môn Toán 9 năm học 2021 – 2022 trường THCS Nguyễn Chí Diểu, Thừa Thiên Huế. Trích dẫn đề kiểm tra giữa kỳ 2 Toán 9 năm 2021 – 2022 trường THCS Nguyễn Chí Diểu – TT Huế : + Bác Hòa mua một hộp khẩu trang y tế và một lọ thuốc bổ hết 1063000 đồng, trong đó đã tính 5% thuế VAT cho mặt hàng khẩu trang và 10% thuế VAT cho mặt hàng thuốc bổ. Nếu không tính thuế VAT của cả hai mặt hàng, bác Hòa chỉ phải trả 970000 đồng. Hỏi giá tiền mỗi mặt hàng khi chưa tính thuế VAT là bao nhiêu? + Vẽ đồ thị hàm số y = 1/2.x2. + Từ điểm A ở ngoài đường tròn (O); kẻ hai tiếp tuyến AB và AC với đường tròn (B và C là các tiếp điểm) a. Chứng minh: tứ giác ABOC nội tiếp b. Kẻ cát tuyến AMN của (O) không qua tâm, chứng minh: AM.AN = AB2 c. Gọi H là giao điểm của BC và AO. Chứng minh: N, O, H, M cùng thuộc một đường tròn.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2021 - 2022 trường Tạ Quang Bửu - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS và THPT Tạ Quang Bửu, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 03 năm 2022. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2021 – 2022 trường Tạ Quang Bửu – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Một cửa hàng có tổng cộng 28 chiếc tivi và tủ lạnh. Giá mỗi cái tủ lạnh là 15 triệu đồng, mỗi cái tivi là 30 triệu đồng. Nếu bán hết 28 cái tivi và tủ lạnh này chủ cửa hàng sẽ thu được 720 triệu đồng. Hỏi cửa hàng có bao nhiêu cái tivi và tủ lạnh? + Cho nửa đường tròn (O), đường kính AB. Lấy hai điểm C, M bất kỳ thuộc nửa đường tròn sao cho AC = CM (AC và CM khác MB). Gọi D là giao điểm của AC và BM; H là giao điểm của AM và BC. 1. Chứng minh: Tứ giác CHMD nội tiếp. 2. Chứng minh: DA.DC = DB.DM. 3. Tiếp tuyến tại A của đường tròn (O) cắt tia BC tại K. Chứng minh rằng: KD. Gọi Q là giao điểm của DH và AB. Chứng minh rằng: khi điểm C di chuyển trên nửa đường tròn sao cho AC = CM thì đường tròn ngoại tiếp CMQ luôn đi qua một điểm cố định. + Chọn đáp án đúng trong mỗi câu sau (học sinh ghi vào giấy thi phương án lựa chọn. Ví dụ: câu 1 chọn đáp án A, ghi là: 1A).