Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Lương Tài - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Lương Tài – Bắc Ninh : + Một phố nhỏ có 44 người trong độ tuổi từ 1 đến 85 (tuổi mỗi người là một số nguyên dương). Chứng minh rằng trong số những người trên có hai người cùng tuổi hoặc có ba người mà tuổi của một người bằng tổng số tuổi của hai người kia. + Cho tam giác ABC vuông cân tại A. Giả sử D là điểm nằm bên trong tam giác sao cho tam giác ABD cân và 0 ADB 150. Trên nửa mặt phẳng không chứa D có bờ là đường thẳng AC lấy điểm E sao cho tam giác ACE là tam giác đều. Chứng minh ba điểm B, D, E thẳng hàng. + Một người gửi tiết kiệm vào ngân hàng với số tiền là 200 triệu đồng, gửi theo lãi suất 6% kì hạn một năm lĩnh lãi mỗi quí (3 tháng). Theo qui định nếu đến hạn mà không đến lĩnh lãi thì số đó sẽ được nhập vào vốn gửi ban đầu. Do công việc người đó không đến lĩnh quí thứ nhất, các quí còn lại vẫn đến lĩnh lãi bình thường. Vậy tổng số tiền gửi và lãi sau một năm người đó sẽ nhận được là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Quảng Ninh - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Ninh, tỉnh Quảng Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Quảng Ninh – Quảng Bình : + Chứng minh rằng với mọi số nguyên dương m và n thì mn(m2 – 1)(n2 + 2) chia hết cho 9. + Cho đa thức f(x), biết rằng khi chia f(x) cho x – 1 thì dư 3, chia cho x – 2 thì dư 5, chia cho (x – 1)(x – 2) thì được thương là 2x và còn dư. Tìm đa thức f(x). + Cho tam giác ABC vuông tại A có AB < AC. Kẻ AH vuông góc với BC tại H, tia phân giác của HAC cắt BC tại D. a) Chứng minh BA = BD. b) Trên tia đối của tia AB lấy điểm K sao cho AK = HD. Kẻ DE vuông góc với AC tại E. Chứng minh KE // AD. c) Gọi F là giao điểm của HK với AD, chứng minh F là trung điểm của đoạn thẳng HK.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số nguyên. Biết rằng f(2), f(0), f(-2) đồng thời chia hết cho 3. Chứng minh a, b, c đều chia hết cho 3. + Tổng số học sinh ba lớp 7A, 7B, 7C của một trường THCS là 94 học sinh. Nếu chuyển 1 học sinh từ lớp 7A và 3 học sinh từ lớp 7B sang lớp 7C thì số học sinh của ba lớp 7A, 7B, 7C lần lượt tỉ lệ nghịch với 4; 5; 3. Tính số học sinh lúc đầu của mỗi lớp. + Cho tam giác ABC nhọn (AB < AC), kẻ tia phân giác AI (I thuộc BC) của góc BAC. Trên cạnh AC lấy điểm D sao cho AD = AB. a) Chứng minh IB = ID. b) Tia DI cắt tia AB tại E, tia AI cắt tia EC tại H. Chứng minh H là trung điểm của EC. 2) Cho tam giác ABC vuông tại C, kẻ CH vuông góc với AB (H thuộc AB). Chứng minh AC + BC < AB + CH.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Yên Thế - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thế, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Cho các số nguyên dương m, n và p là số nguyên tố thỏa mãn: p/(m – 1) = (m + n)/p. Chứng minh rằng: p2 = n + 2. + Biết f(x) chia cho x – 3 thì dư 7; chia cho x – 2 thì dư 5; chia cho (x – 3).(x – 2) được thương là 3x và còn dư. Tìm f(x). + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC. Lấy điểm D trên đoạn thẳng AB (D khác A và B), trên tia đối của tia CA lấy điểm K sao cho CK = BD; DK cắt BC tại I. Hạ DP, KQ vuông góc với BC lần lượt tại P và Q. 1. Chứng minh rằng: BDP = CKQ; I là trung điểm DK. 2. Đường vuông góc với DK tại I cắt AM tại S. Chứng minh: SC vuông góc với AK. 3. Đường thẳng vuông góc với MD tại M cắt AC tại E. Chứng minh rằng: MD + ME ≥ AD + AE.