Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 10 thi THPT QG 2020 lần 2 trường THPT chuyên Vĩnh Phúc

Ngày 24 tháng 05 năm 2020, trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia lần thứ hai năm học 2019 – 2020 dành cho học sinh khối lớp 10. Đề KSCL Toán 10 thi THPT QG 2020 lần 2 trường THPT chuyên Vĩnh Phúc có mã đề 123, đề thi có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 10 thi THPT QG 2020 lần 2 trường THPT chuyên Vĩnh Phúc : + Cho đoạn thẳng AB có độ dài 2a và số k2. Tập hợp các điểm M thỏa mãn đẳng thức MA.MB = k2 là? A. Đường tròn đường kính AB. B. Đường tròn tâm là trung điểm của AB và bán kính bằng k2 + a2. C. Đường trung trực của đoạn thẳng AB. D. Đường tròn tâm là trung điểm của AB và bán kính bằng √(k2 + a2). + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây), kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó ở độ cao 6m. [ads] + Cho tam giác ABC. Khi đó vị trí của điểm M để biểu thức MA.MB + MB.MC + MC.MA đạt giá trị nhỏ nhất là? A. Tâm đường tròn ngoại tiếp tam giác ABC. B. Tâm đường tròn nội tiếp tam giác ABC. C. Trực tâm tam giác ABC. D. Trọng tâm tam giác ABC. + Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB bằng 70m, phương nhìn AC tạo với phương nằm ngang góc 30 độ, phương nhìn BC tạo với phương nằm ngang góc 15 độ 30 phút. Khi đó chiều cao của ngọn núi so với mặt đất (làm tròn đến hàng đơn vị) bằng? + Từ đồ thị hàm số y = x^2 – 4x + 3 ta thực hiện những bước biến đổi sau để được đồ thị hàm số y = x^2 – 6x + 5. A. Tịnh tiến sang phải 1 đơn vị và tịnh tiến xuống dưới 3 đơn vị. B. Tịnh tiến sang trái 1 đơn vị và tịnh tiến lên trên 4 đơn vị. C. Đối xứng qua trục Ox và tịnh tiến sang trái 1 đơn vị. D. Đối xứng qua trục Oy và tịnh tiến lên trên 3 đơn vị.

Nguồn: toanmath.com

Đọc Sách

Đề thi chất lượng lần 1 Toán 10 trường THPT Đào Duy Từ - Hà Nội
Đề thi chất lượng lần 1 Toán 10 trường THPT Đào Duy Từ – Hà Nội mã đề 132, đề gồm 04 trang với 25 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra chất lượng học tập môn Toán của học sinh khối 10 trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề thi chất lượng lần 1 Toán 10 trường THPT Đào Duy Từ – Hà Nội : + Cho đường thẳng d: y = 2x +1 – 2m và parabol (P) đi qua điểm A(1;0) và có đỉnh S(3;-4). a) Lập phương trình và vẽ parabol (P). b) Chứng minh rằng đường thẳng (d) luôn đi qua một điểm cố định. c) Chứng minh rằng đường thẳng d luôn cắt (P) tại hai điểm phân biệt. [ads] + Cho hàm số y = ax^2 + bc + c (a > 0). Khẳng định nào sau đây là sai? A. Đồ thị của hàm số luôn cắt trục hoành tại hai điểm phân biệt. B. Hàm số nghịch biến trên khoảng (-vc;-b/2a). C. Hàm số đồng biến trên khoảng (-b/2a;+vc). D. Đồ thị của hàm số có trục đối xứng là đường thẳng x = -b/2a. + Cho hàm số bậc nhất y = ax + b. Tìm a và b biết rằng đồ thị hàm số cắt đường thẳng d1: y = 2x + 5 tại điểm có hoành độ bằng –2 và cắt đường thẳng d2: y = -3x + 4 tại điểm có tung độ bằng –2.
Đề kiểm tra định kỳ lần 2 Toán 10 năm 2019 - 2020 trường THPT chuyên Bắc Ninh
Đề kiểm tra định kỳ lần 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh gồm có hai đề riêng biệt: đề dành cho các lớp 10 chuyên Vật lý – chuyên Hóa học – chuyên Tin học và đề dành cho các lớp 10 chuyên Ngữ Văn – chuyên Sinh học – chuyên Tiếng Anh, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề kiểm tra định kỳ lần 2 Toán 10 năm 2019 – 2020 trường THPT chuyên Bắc Ninh : + Cho hàm số y = -x^2 + (2m – 3)x + 1 – m^2 (trong đó m là tham số). a) Lập bảng biến thiên và vẽ đồ thị hàm số với m = 2. b) Tìm tất cả giá trị của m đề đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác O và nằm khác phía nhau đối với điểm O. c) Tìm điều kiện của tham số m để hàm số đã cho nghịch biến trên khoảng (0;2019). + Trên mặt phẳng tọa độ Oxy cho bốn điểm A(0;1), B(-1;3), C(5;6), D(4;3). a ) Chứng tỏ rằng bốn điểm đã cho tạo thành một hình thang có đáy là AD và BC. b) Biết I là điểm thỏa mãn 2.IA + 2.IB + 3.IC + 3.ID = 0. Chứng minh I nằm trên đường trung bình của hình thang tạo bởi bốn điểm đã cho. + Cho ba số thực không âm a, b, c thỏa mãn a + b + c = 3 và không có số nào lớn hơn 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = √(1 + a) + √(1 + b) + √(1 + c).
Đề kiểm tra Toán 10 năm học 2019 - 2020 trường THPT Đống Đa - Hà Nội
giới thiệu đến quý thầy, cô cùng các em học sinh đề kiểm tra giữa học kì 1 môn Toán 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội, đề gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề kiểm tra Toán 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội : + Xét tính chẵn lẻ của hàm số y = 2x^3 – 3x. + Tìm m sao cho hàm số sau là hàm số chẵn: y = x^4 – 3x^2 + (m – 2)x + 4m – 1. + Cho tam giác ABC với trọng tâm G. a) Chứng minh rằng với mọi điểm D bất kì ta luôn có AC + DA + BD = AD – CD + BA. b) Tìm tập hợp các điểm M thỏa mãn |AB + MA| = |AB – AC|. c) Gọi I là điểm đối xứng với A qua B, đường thẳng IG cắt AC tại E. Tính tỉ số EA/EC.
Đề kiểm tra Toán 10 đầu năm học 2019 - 2020 trường Ngô Gia Tự - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chất lượng môn Toán 10 đầu năm học 2019 – 2020 trường THPT Ngô Gia Tự – Phú Yên, đề thi gồm 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra Toán 10 đầu năm học 2019 – 2020 trường Ngô Gia Tự – Phú Yên : + Trong các phát biểu thành lời mệnh đề “∃x thuộc R | x^2 = 2” phát biểu nào sau đây là đúng? A. Nếu x là số thực thì bình phương của nó bằng 2. B. Bình phương của mọi số thực đều bằng 2. C. Có ít nhất một số thực mà bình phương của nó bằng 2. D. Có duy nhất một số thực mà bình phương của nó bằng 2. [ads] + Trong các phát biểu sau, có bao nhiêu phát biểu là mệnh đề? a/ Tuy Hòa là thành phố của tỉnh Bình Định. b/ Sông Đà rằng chảy qua thành phố Tuy Hòa. c/ Trời hôm nay nắng đẹp quá! d/ 6 + 8 = 15. e/ x + 2 = 3. + Cách phát biểu nào sau đây không thể dùng để phát biểu mệnh đề A ⇒ B. A. B là điều kiện đủ để có A. B. A kéo theo B. C. Nếu A thì B. D. A là điều kiện đủ để có B.