Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL học sinh giỏi Toán 11 lần 1 năm 2022 - 2023 trường THPT Quế Võ 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng học sinh giỏi môn Toán 11 lần 1 năm học 2022 – 2023 trường THPT Quế Võ số 1, tỉnh Bắc Ninh; đề thi gồm 01 trang với 06 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), thí sinh không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm. Trích dẫn Đề KSCL học sinh giỏi Toán 11 lần 1 năm 2022 – 2023 trường THPT Quế Võ 1 – Bắc Ninh : + Gọi X là tập hợp tất cả các số tự nhiên có 5 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên từ X ra một số. Tính xác suất để chọn được số không có hai chữ số chẵn đứng liền kề. + Trong mặt phẳng Oxy cho đường tròn 13 2 2 C1 x y, đường tròn 6 25 2 2 C2 x y 1. Tìm giao điểm của hai đường tròn C1 và C2. 2. Gọi giao điểm có tung độ dương của C1 và C2 là A, viết phương trình đường thẳng đi qua A cắt C1 và C2 theo hai dây cung có độ dài bằng nhau. + Cho hình thoi ABCD tâm O có 0 B 60. Điểm S nằm ngoài mặt phẳng (ABCD) thỏa mãn SAB SAC. Cho M, N lần lượt là trung điểm của SA và CD. 1. Chứng minh rằng: MN SBC. 2. Dựng thiết diện của hình chóp S.ABCD bị cắt bởi mặt phẳng qua MN và song song với SC. Thiết diện là hình gì? 3. Tính tỉ số diện tích của thiết diện và tam giác SBC.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 11 lần 1 năm 2019 2020 trường THPT Đồng Đậu Vĩnh Phúc
Ngày … tháng 11 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 11 lần thứ nhất giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề KSCL Toán 11 lần 1 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc mã đề 111, đề được biên soạn theo dạng đề tự luận với 11 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề KSCL Toán 11 lần 1 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc : + Đề thi khảo sát môn Toán của học sinh khối 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm hai phần đề tự luận và trắc nghiệm. Mỗi học sinh dự thi phải thực hiện giải 2 phần đề gồm một phần tự luận và một phần trắc nghiệm. Trong đó tự luận có 12 đề, trắc nghiệm có 15 đề. Hỏi mỗi học sinh có bao nhiêu cách chọn đề thi gồm tự luận và trắc nghiệm? [ads] + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 gam đường, 1 lít nước và 1 gam hương liệu; pha chế 1 lít nước táo cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng. Mỗi lít nước táo được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để được số điểm thưởng là lớn nhất? + Trong mặt phẳng Oxy, cho điểm N (-2;3). Tìm ảnh của điểm N khi thực hiện liên tiếp phép tịnh tiến theo vectơ v(1;-1) và phép vị tự tâm I tỉ số 2 với I(1;2).
Đề KSCL Toán 11 lần 1 năm 2019 2020 trường Nguyễn Viết Xuân Vĩnh Phúc
Sáng thứ Tư ngày 30 tháng 10 năm 2019, trường THPT Nguyễn Viết Xuân, huyện Vĩnh Tường, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 11 lần thứ nhất, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề KSCL Toán 11 lần 1 năm 2019 – 2020 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc có mã đề 001, đề thi gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, để hoàn thành tốt bài thi, ngoài việc nắm chắc các kiến thức Toán 11 đã học, học sinh cần phải ôn lại một số chủ đề Toán 10 trọng tâm, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 lần 1 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho phương trình sinxcosx – sinx – cosx + m = 0 trong đó m là tham số thực. Để phương trình có nghiệm, các giá trị thích hợp của m là? + Cho 3 điểm di động A(1 – 2m;4m), B(2m;1 – m), C(3m – 1;0) với m là tham số. Biết khi m thay đổi thì trọng tâm tam giác ABC chạy trên một đường thẳng cố định, phương trình đường thẳng đó là? [ads] + Cho tam giác ABC; A’, B’, C’ lần lượt là trung điểm BC, AC, AB. Gọi O, G, H lần lượt là tâm đường tròn ngoại tiếp, trọng tâm, trực tâm tam giác ABC. Lúc đó phép biến hình biến tam giác ABC thành tam giác A’B’C’ là? + Cho hình chữ nhật ABCD biết A(1;2) và hai cạnh nằm trên hai đường thẳng có phương trình: 4x – 3y + 12 = 0 và 3x + 4y + 4 = 0. Diện tích hình chữ nhật ABCD bằng? + Cho hàm số y = x – |x|. Trên đồ thị của hàm số lấy hai điểm A và B có hoành độ lần lượt là – 2 và 1. Phương trình đường thẳng AB là?