Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán trắc nghiệm góc lượng giác và công thức lượng giác

Tài liệu gồm 54 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chủ đề góc lượng giác và công thức lượng giác trong chương trình Đại số 10 chương 6; các bài toán được phân dạng, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán trắc nghiệm góc lượng giác và công thức lượng giác: Chủ đề 1 . Góc và cung lượng giác. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Mối liên hệ giữa radian và độ 1 + Dạng toán 2. Đường tròn lượng giác và các bài toán liên quan. 2 Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Mối liên hệ giữa radian và độ 4 + Dạng toán 2. Đường tròn lượng giác và các bài toán liên quan. 5 Chủ đề 2 . Giá trị lượng giác của một cung. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Xét dấu của các giá trị lượng giác (Trang 1). + Dạng toán 2. Giá trị lượng giác của các cung có liên quan đặc biệt (Trang 2). + Dạng toán 3. Tính giá trị lượng giác (Trang 3). + Dạng toán 4. Rút gọn biểu thức lượng giác (Trang 6). Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Xét dấu của các giá trị lượng giác (Trang 9). + Dạng toán 2. Giá trị lượng giác của các cung có liên quan đặc biệt (Trang 10). + Dạng toán 3. Tính giá trị lượng giác (Trang 11). + Dạng toán 4. Rút gọn biểu thức lượng giác (Trang 15). [ads] Chủ đề 3 . Công thức lượng giác. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Áp dụng công thức cộng (Trang 1). + Dạng toán 2. Áp dụng công thức nhân đôi và công thức hạ bậc (Trang 4). + Dạng toán 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích (Trang 5). + Dạng toán 4. Kết hợp các công thức lượng giác (Trang 7). + Dạng toán 5. Giá trị lớn nhất và giá trị nhỏ nhất (Trang 9). + Dạng toán 6. Nhận dạng tam giác (Trang 9). Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Áp dụng công thức cộng (Trang 12). + Dạng toán 2. Áp dụng công thức nhân đôi và công thức hạ bậc (Trang 15). + Dạng toán 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích (Trang 17). + Dạng toán 4. Kết hợp các công thức lượng giác (Trang 18). + Dạng toán 5. Giá trị lớn nhất và giá trị nhỏ nhất (Trang 22). + Dạng toán 6. Nhận dạng tam giác (Trang 23).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Lượng giác - Phạm Thu Hiền
Lượng giác đóng vai trò quan trọng và xuyên suốt trong chương trình toán phổ thông và được ứng dụng khá nhiều trong thực tế, đặc biệt là trong lĩnh vực nghiên cứu thiên văn. Đây sẽ là một trong những vấn đề quan trọng trong kì thi THPT quốc gia 2018, khi chương trình 10 và 11 được đưa vào trong đề thi. Chủ đề lượng giác được chia làm ba phần: + Phần 1: Cơ sở lí thuyết như cung liên kết, công thức lượng giác, hằng đẳng thức lượng giác, hàm số lượng giác. [ads] + Phần 2: Các dạng phương trình lượng giác thường gặp. + Phần 3: Một số bài toán lượng giác điển hình có liên quan. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh THPT. Sẽ không tránh khỏi thiếu sót khi biên tập, rất mong nhận được sự đóng góp từ quý bạn đọc để chuyên đề ngày một hoàn thiện hơn.
Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio - Nguyễn Tiến Chinh
Tài liệu Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio của thầy giáo Nguyễn Tiến Chinh gồm 14 trang. Tài liệu hướng dẫn mẹo bấm máy tính nhanh của một số bài toán lượng giác thường gặp.
5 dạng toán hàm số lượng giác điển hình - Trần Đình Cư
Tài liệu gồm 19 trang trình bày 5 dạng toán thường gặp về hàm số lượng giác: + Dạng 1. Tìm tập xác định của hàm số. + Dạng 2. Xét tính chẵn lẻ của hàm số. + Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. + Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. + Dạng 5. Vẽ đồ thị hàm số lượng giác. Mỗi dạng đều có phương pháp giải, ví dụ mẫu có lời giải chi tiết kèm theo phần bài tập.
Chuyên đề phương trình lượng giác - Trần Duy Thúc
Tài liệu Chuyên đề phương trình lượng giác của thầy Trần Duy Thúc gồm 39 trang, tài liệu tóm tắt những công thức lượng giác thường gặp, các dạng phương lượng giác cơ bản và nâng cao được đan xen với 50 ví dụ về các phương trình lượng giác điển hình. Phần cuối tài liệu là tuyển tập 160 bài toán phương trình lượng giác được trích từ các đề thi Quốc gia, đề dự bị và đề thi thử.