Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán trắc nghiệm góc lượng giác và công thức lượng giác

Tài liệu gồm 54 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chủ đề góc lượng giác và công thức lượng giác trong chương trình Đại số 10 chương 6; các bài toán được phân dạng, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán trắc nghiệm góc lượng giác và công thức lượng giác: Chủ đề 1 . Góc và cung lượng giác. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Mối liên hệ giữa radian và độ 1 + Dạng toán 2. Đường tròn lượng giác và các bài toán liên quan. 2 Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Mối liên hệ giữa radian và độ 4 + Dạng toán 2. Đường tròn lượng giác và các bài toán liên quan. 5 Chủ đề 2 . Giá trị lượng giác của một cung. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Xét dấu của các giá trị lượng giác (Trang 1). + Dạng toán 2. Giá trị lượng giác của các cung có liên quan đặc biệt (Trang 2). + Dạng toán 3. Tính giá trị lượng giác (Trang 3). + Dạng toán 4. Rút gọn biểu thức lượng giác (Trang 6). Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Xét dấu của các giá trị lượng giác (Trang 9). + Dạng toán 2. Giá trị lượng giác của các cung có liên quan đặc biệt (Trang 10). + Dạng toán 3. Tính giá trị lượng giác (Trang 11). + Dạng toán 4. Rút gọn biểu thức lượng giác (Trang 15). [ads] Chủ đề 3 . Công thức lượng giác. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Áp dụng công thức cộng (Trang 1). + Dạng toán 2. Áp dụng công thức nhân đôi và công thức hạ bậc (Trang 4). + Dạng toán 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích (Trang 5). + Dạng toán 4. Kết hợp các công thức lượng giác (Trang 7). + Dạng toán 5. Giá trị lớn nhất và giá trị nhỏ nhất (Trang 9). + Dạng toán 6. Nhận dạng tam giác (Trang 9). Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Áp dụng công thức cộng (Trang 12). + Dạng toán 2. Áp dụng công thức nhân đôi và công thức hạ bậc (Trang 15). + Dạng toán 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích (Trang 17). + Dạng toán 4. Kết hợp các công thức lượng giác (Trang 18). + Dạng toán 5. Giá trị lớn nhất và giá trị nhỏ nhất (Trang 22). + Dạng toán 6. Nhận dạng tam giác (Trang 23).

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm lượng giác vận dụng cao - Nguyễn Minh Tuấn
giới thiệu đến thầy, cô cùng các em học sinh chuyên đề trắc nghiệm lượng giác vận dụng cao do tác giả Nguyễn Minh Tuấn biên soạn, tài liệu gồm 68 trang tuyển chọn và giải chi tiết 114 câu hỏi và bài tập hàm số lượng giác và phương trình lượng giác nâng cao với đầy đủ các dạng bài khác nhau. Nội dung tài liệu : + Sử dụng lượng giác: Nêu các ứng dụng của lượng giác trong khoa học và đời sống, để bạn đọc hiểu được tầm quan trọng của lượng giác, từ đó kích thích hứng thú học chuyên đề lượng giác. + Những gì bạn học trong lượng giác?: Nêu các nội dung kiến thức bạn đọc cần nắm sau khi học chương lượng giác. + Lời khuyên cho việc học lượng giác: Tác giả Nguyễn Minh Tuấn đưa ra các lời khuyên về việc học lượng giác sao cho hiệu quả, nắm bắt nhanh chóng và tránh các sai lầm thường gặp. + Bài tập tổng hợp: Tuyển chọn 114 bài toán trắc nghiệm nâng cao hàm số lượng giác và phương trình lượng giác có lời giải chi tiết, các bài toán được trích dẫn chủ yếu từ các đề thi thử Toán. Xem thêm : Bài tập nhị thức Niu-tơn vận dụng cao – Nguyễn Minh Tuấn
Trắc nghiệm nâng cao hàm số lượng giác và phương trình lượng giác - Đặng Việt Đông
Tài liệu trắc nghiệm nâng cao hàm số lượng giác và phương trình lượng giác được biên soạn bởi thầy Đặng Việt Đông gồm 76 trang tuyển chọn các câu hỏi và bài tập vận dụng cao chủ đề hàm số lượng giác và phương trình lượng giác có đáp án và lời giải chi tiết trong chương trình Đại số và Giải tích 11 chương 1, các câu hỏi và bài tập trong tài liệu có độ khó cao và được trích dẫn từ các đề thi thử môn Toán nhằm giúp học sinh ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia 2018 môn Toán. Phần 1 . Trắc nghiệm nâng cao hàm số lượng giác + Dạng 1. Phương trình bậc nhất với sinx và cosx + Dạng 2. Phương trình bậc nhất với sinx và cosx + Dạng 3. Phương trình thuần bậc hai với sinx và cosx + Dạng 4. Phương trình bậc ba với sinx và cosx + Dạng 5. Phương trình đối xứng với sinx và cosx + Dạng 6. Phương trình dạng thuận nghịch Phần 2 . Trắc nghiệm nâng cao phương trình lượng giác
Chuyên đề lượng giác ôn thi THPT Quốc gia môn Toán - Nguyễn Hồng Điệp
Tài liệu gồm 30 trang tóm tắt lý thuyết và tuyển chọn 264 bài toán trắc nghiệm hàm số lượng giác và phương trình lượng giác có đáp án trong chương trình Đại số và Giải tích 11 chương 1, tài liệu được biên soạn bởi thầy Nguyễn Hồng Điệp. Phần I . Lý thuyết Phần II . Trắc nghiệm hàm số lượng giác 1. Tập xác định 2. Tính chẵn lẻ 3. GTLN-GTNN [ads] Phần III . Trắc nghiệm phương trình lượng giác 1. Cơ bản 2. Đưa về Cơ bản 3. Bậc 2 4. Đưa về bậc 2 5. Thuần nhất đối với sin và côsin 6. Đưa về thuần nhất 7. Phương trình tích 8. Đẳng cấp bậc 2 9. Phương trình có điều kiện 10. Có điều kiện về góc 11. Phương trình chứa tham số
Đề cương ôn tập cung và góc lượng giác, công thức lượng giác - Phùng Hoàng Em
Tài liệu gồm 12 được biên soạn bởi thầy Phùng Hoàng Em bao gồm tóm tắt lý thuyết, phân dạng toán, ví dụ minh họa và tuyển chọn các bài tập trắc nghiệm chủ đề cung và góc lượng giác, công thức lượng giác trong chương trình Đại số 10 chương 6, tài liệu giúp học sinh ôn tập chuẩn bị cho kỳ kiểm tra 1 tiết Đại số 10 chương 6. A. LÝ THUYẾT CẦN NHỚ 1. Công thức lượng giác cơ bản. 2. Công thức cộng. (Dùng để tách góc, hoặc ghép góc) 3. Công thức góc nhân đôi. (Dùng để giảm góc) 4. Công thức hạ bậc. (Dùng để làm mất bình phương) 5. Dấu của các tỉ số lương giác tương ứng trên các góc phần tư. B. CÁC DẠNG TOÁN TỰ LUẬN Dạng 1 . Cho trước 1 tỉ số lượng giác, tính các tỉ số lượng giác còn lại 1. Ta thực hiện theo các bước: + Sử dụng công thức thích hợp để tính tỉ số tiếp theo (chú ý nhóm công thức cơ bản). + Ứng với miền của α đề cho, xem Mục 5. để chọn kết quả đúng. + Tính toán các tỉ số còn lại. 2. Nếu đề cho trước 1 tỉ số lượng giác, yêu cầu tính giá trị biểu thức. Ta thường biến đổi biểu thức đó về giá trị đã cho. Sau đó, thay kết quả. [ads] Dạng 2 . Rút gọn biểu thức hoặc chứng minh đẳng thức 1. Các phương pháp thường dùng: + Biến đổi vế phức tạp của đẳng thức về vế đơn giản. + Biến đổi tương đương để đẳng thức đi đến kết quả hiển nhiên đúng. + Phối hợp cả hai cách trên. 2. Chú ý: + Nếu trong đẳng thức, các góc đều giống nhau, ta ưu tiên nhóm công thức cơ bản. + Nếu trong đẳng thức, có xuất hiện góc gấp đôi và bình phương tỉ số lượng giác, ta ưu tiên nhóm nhân đôi và hạ bậc. + Nếu cần tách góc, ta ưu tiên nhóm công thức cộng. C. CÂU HỎI TRẮC NGHIỆM Tuyển chọn 60 bài toán cung và góc lượng giác, công thức lượng giác có đáp án.