Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 12 môn Toán lần 2 năm 2019 2020 trường THPT Đồng Đậu Vĩnh Phúc

Nội dung Đề thi HSG lớp 12 môn Toán lần 2 năm 2019 2020 trường THPT Đồng Đậu Vĩnh Phúc Bản PDF Ngày … tháng 11 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi Toán lớp 12 cấp trường lần thứ 2 năm học 2019 – 2020, nhằm tiếp tục tuyển chọn các em học sinh giỏi Toán lớp 12 vào đội tuyển của trường, đồng thời giúp đội tuyển nhà trường rèn luyện, hướng đến kỳ thi học sinh giỏi Toán THPT cấp tỉnh. Đề thi HSG Toán lớp 12 lần 2 năm học 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc được biên soạn theo hình thức tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 180 phút, nội dung đề bao quát chương trình Toán lớp 10, Toán lớp 11 và Toán lớp 12, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 12 lần 2 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc : + Một mảnh đất hình chữ nhật ABCD có chiều dài AB = 25m, chiều rộng AD = 20m được chia thành hai phần bằng nhau bởi vạch chắn MN (M, N lần lượt là trung điểm BC và AD). Một đội xây dựng làm một con đường đi từ A đến C qua vạch chắn MN, biết khi làm đường trên miền ABMN mỗi giờ làm được 15m và khi làm trong miền CDNM mỗi giờ làm được 30m. Tính thời gian ngắn nhất mà đội xây dựng làm được con đường đi từ A đến C. [ads] + Trong cuộc thi: “Thiết kế và trình diễn các trang phục dân tộc” do Đoàn trường THPT Đồng Đậu tổ chức vào tháng 11 năm 2019 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó có 4 tiết mục khối 12, có 5 tiết mục khối 11và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng 26 tháng 3. Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12. + Cho hình hộp đứng ABCD.A1B1C1D1 có các cạnh AB = AD = 2, AA1 = √3 và góc BAD = 60 độ. Gọi M, N lần lượt là trung điểm của các cạnh A1D1 và A1B1. Chứng minh rằng AC1 vuông góc với mặt phẳng (BDMN). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3, BC = 6, mặt phẳng (SAB) vuông góc với đáy, các mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) các góc bằng nhau. Biết khoảng cách giữa hai đường thẳng SA và BD bằng 6. Tính thể tích khối chóp S.ABCD và cosin góc giữa hai đường thẳng SA và BD. + Trong mặt phẳng với hệ tọa độ (Oxy), cho tam giác ABC ngoại tiếp đường tròn tâm J(2;1). Biết đường cao xuất phát từ đỉnh A của tam giác ABC có phương trình: 2x + y – 10 = 0 và D(2;-4) là giao điểm thứ hai của AJ với đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết B có hoành độ âm và B thuộc đường thẳng có phương trình x + y + 7 = 0.

Nguồn: sytu.vn

Đọc Sách

Đề Toán chọn đội tuyển học sinh giỏi dự thi Quốc gia 2019 sở GD và ĐT Đồng Tháp
Nội dung Đề Toán chọn đội tuyển học sinh giỏi dự thi Quốc gia 2019 sở GD và ĐT Đồng Tháp Bản PDF Sytu giới thiệu đến bạn đọc đề Toán chọn đội tuyển học sinh giỏi dự thi cấp Quốc gia năm 2019 của sở GD và ĐT Đồng Tháp, đề gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thí sinh làm bài trong 180 phút, kỳ thi được tổ chức ngày 12/07/2018, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề Toán chọn đội tuyển học sinh giỏi dự thi Quốc gia 2019 sở GD và ĐT Đồng Tháp : + Cho bảng ô vuông gồm m hàng và n cột. Tại ô góc trên bên trái của bảng người ta đặt một quân cờ. Hai người chơi luân phiên di chuyển quân cờ, mỗi lượt di chuyển chỉ di chuyển quân cờ sang phải một ô hoặc xuống dưới một ô. Người chơi nào đến lượt mình không di chuyển được quân cờ thì thua. Xác định điều kiện của m n, để người thực hiện lượt chơi đầu tiên luôn là người thắng. [ads] + Cho đường thẳng d và điểm A cố định không thuộc d, H là hình chiếu của A trên d. Các điểm B, C thay đổi trên d sao cho HB.HC = -1. Đường tròn đường kính AH cắt AB, AC lần lượt tại M, N. Chứng minh đường thẳng MN đi qua một điểm cố định. Gọi O là tâm đường tròn ngoại tiếp tam giác BMC. Chứng minh O chạy trên một đường thẳng cố định. + Xét phương trình x^31 + y^5 = z^2018. Chứng minh rằng tồn tại vô số bộ ba số nguyên x, y, z thỏa mãn phương trình trên. Có tồn tại hay không bộ ba số nguyên dương x, y, z thoả mãn phương trình trên?
Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình
Nội dung Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình Bản PDF Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra ngày 21/08/2018, đề thi có lời giải chi tiết. Các dạng toán được đề cập trong đề gồm: Dãy số và giới hạn của dãy số, Bài toán hình học phẳng liên quan đến đường tròn, Bất đẳng thức, Bài toán chia hết.
Đề minh họa kỳ thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ
Nội dung Đề minh họa kỳ thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ Bản PDF Đề minh họa kỳ thi chọn HSG (học sinh giỏi) Toán lớp 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang với 40 câu hỏi trắc nghiệm (có đáp án) và 4 bài toán tự luận (có đáp số), thời gian làm bài 180 phút. Trích dẫn đề thi : + Một khối trụ được sơn hai mặt đáy và phần xung quanh, khối trụ có chiều cao bằng 8 và bán kính đáy bằng 6. Một mặt phẳng (P) cắt hai đáy theo các dây cung cách tâm tương ứng một khoảng là 3, đồng thời chia khối trụ thành hai phần có thể tích bằng nhau. Tính diện tích của phần mặt phẳng cắt không được sơn. A. 30√3 + 20π B. 12π + 6√3 C. 15√3 + 10π D. 60π [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cho AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng (ABC) là điểm H thỏa mãn vtBI = 3.vtIH và góc giữa hai mặt phẳng (SAB), (SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a. + Đội dự tuyển thi học sinh giỏi Toán có 2 học sinh nữ, tham gia kỳ thi để chọn 4 học sinh vào đội tuyển chính thức. Biết xác suất trong đội tuyển chính thức có cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào, số học sinh của đội dự tuyển là: A. 9 B. 11 C. 5 D. 7
Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 trường THPT Nguyễn Trãi Thanh Hóa
Nội dung Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 trường THPT Nguyễn Trãi Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 1 năm học 2023 – 2024 trường THPT Nguyễn Trãi, tỉnh Thanh Hóa; đề thi có đáp án MÃ 101 MÃ 102 MÃ 103 MÃ 104 MÃ 105 MÃ 106 MÃ 107 MÃ 108. Trích dẫn Đề khảo sát Toán lớp 12 lần 1 năm 2023 – 2024 trường THPT Nguyễn Trãi – Thanh Hóa : + Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính bóng bàn. Gọi 1 S là tổng diện tích của ba quả bóng bàn 2 S là diện tích xung quanh của hình trụ. Tỉ số 1 2 S S bằng? + Một nhóm học sinh dựng lều khi đi dã ngoại bằng cách gấp đôi tấm bạt hình chữ nhật có chiều dài 12 m, chiều rộng 6 m (gấp theo đường trong hình minh hoạ) sau đó dùng hai cái gậy có chiều dài bằng nhau chống theo phương thẳng đứng vào hai mép gấp. Hãy tính xem khi dùng chiếc gậy có chiều dài bằng bao nhiêu thì không gian trong lều là lớn nhất. + Cho hình vuông ABCD có các đỉnh ABC tương ứng nằm trên các đồ thị của các hàm số log 2log 3log aaa y xy xy x. Biết rằng diện tích hình vuông bằng 36, cạnh AB song song với trục hoành. Khi đó a bằng? File WORD (dành cho quý thầy, cô):