Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải PT - Hệ PT - Bất PT bằng máy tính Casio - Đoàn Trí Dũng - Bùi Thế Việt

Sách gồm 244 trang hướng dẫn giải các bài toán PT – Hệ PT – Bất PT bằng máy tính Casio, sách được biên soạn bởi hai tác giả Đoàn Trí Dũng và Bùi Thế Việt. Bài toán phương trình, bất phương trình và hệ phương trình vốn dĩ luôn được coi là “con át chủ bài” trong chương trình giảng dạy THPT nói chung cũng như đánh giá năng lực học sinh trong mỗi kỳ thi THPT Quốc gia nói riêng. Các bài tập thuộc dạng toán này đòi hỏi học sinh phải tư duy theo nhiều hướng giải khác nhau, sử dụng các phương pháp khác nhau để tìm được mấu chốt của vấn đề, một trong số đó là phương pháp sử dụng máy tính Casio. Trên cơ sở các kỹ năng xử lý máy tính Casio sẵn có, tác giả cuốn sách đã nghiên cứu và tìm ra những phương pháp xử lý mới, độc đáo, từ đó đúc kết thành 2 phần chính trong cuốn sách này: [ads] Phần 1. Phân loại các kỹ thuật giải bài toán phương trình, hệ phương trình, bất phương trình thành 13 chủ đề + Chủ đề 1. Nâng lũy thừa và định lý Viet đảo + Chủ đề 2. Nhân liên hợp nghiệm vô tỉ + Chủ đề 3. Tư duy phân tích nhân tử bằng Casio + Chủ đề 4. Phương pháp xét tổng hiệu + Chủ đề 5. Nhân liên hợp hai nghiệm hữu tỉ đơn + Chủ đề 6. Nhân liên hợp hai nghiệm hữu tỉ kép + Chủ đề 7. Đánh giá hàm số đơn điệu + Chủ đề 8. Phương pháp hàm đặc trưng + Chủ đề 9. Giải phương trình bằng phương pháp nhân liên hợp nghiệm hữu tỉ đơn + Chủ đề 10. Giải phương trình bằng phương pháp nhân liên hợp hai biến hữu tỉ đơn + Chủ đề 11. Phương trình chứa nghiệm kép vô tỉ + Chủ đề 12. Bài toán nghiệm bội chuyên sâu + Chủ đề 13. Một cách tiếp cận khác của bài toán nghiệm bội ba Phần 2. Tổng hợp các bài toán phương trình, hệ phương trình, bất phương trình hay và khó được định hướng tư duy về cách tiếp cận bài toán ngay từ lúc mới bắt đầu.

Nguồn: toanmath.com

Đọc Sách

Luyện siêu tư duy Casio chuyên đề phương trình - Bất PT - Hệ PT - Đoàn Trí Dũng
Sách gồm 151 trang được chia thành 2 phần: + Phần 1: Phân loại các kỹ thuật giải bài toán phương trình, bất phương trình và hệ phương trình. + Phần 2: Tổng hợp các bài toán phương trình, bất phương trình, hệ phương trình hay và khó trong các đề thi thử trên toàn quốc. Phần tổng hợp được đưa ra trong 2 chủ đề cuối cùng. [ads]
Một số phương pháp xử lý phương trình sau khi trục căn - Nguyễn Văn Hoàng
Tài liệu dành cho các bạn đã biết cách nhẩm nghiệm triệt để bằng máy tính, đã biết cách trục với số, với biến … và mong muốn tìm kiếm thêm kinh nghiệm trong việc xử lý phương trình sau khi trục căn. Lưu ý khi sử dụng phương pháp: + Khi nhận thấy các phương pháp khác đều không thực hiện được thì ta mới nghĩ đến trục căn, bởi vì việc xử lý phương trình còn lại sau khi trục ta không định hướng trước được. + Một số kĩ thuật xử lý phương trình còn lại có thể là: Bỏ bớt căn và biểu thức không âm, làm chặt miền nghiệm, tách hạng tử (thêm bớt max min của biểu thức), bất đẳng thức, xét hàm số tìm GTLN và GTNN, sử dụng hệ tạm, chia khoảng. Có thể có thêm một vài kĩ thuật nữa, như trên cũng đã đủ dùng. Mỗi kĩ thuật có một lợi thế trong từng bài, rất nhiều bài phải kết hợp chúng với nhau. Việc sử dụng kĩ thuật nào nhiều khi còn tùy vào năng lực mỗi người. [ads] Thông thường, xử lý phương trình còn lại là chứng minh vô nghiệm bằng đánh giá. Điều này có ba điểm cần nắm: + Thứ nhất: Làm cho miền nghiệm càng chặt càng dễ đánh giá. + Thứ hai: Trục nghiệm đơn thì trục với số cũng được, trục với biến cũng được, miễn là việc chứng minh phương trình còn lại vô nghiệm dễ dàng. + Thứ ba: Có thể có nhiều cách chứng minh vô nghiệm cho một phương trình, tùy năng lực mỗi người mà lựa chọn.
Phương pháp đặt ẩn phụ không hoàn toàn giải phương trình vô tỷ - Vũ Hồng Phong
Tài liệu gồm 52 trang trình bày phương pháp đặt ẩn phụ không hoàn toàn giải phương trình vô tỷ do thầy giáo Vũ Hồng Phong biên soạn. Tài liệu nêu sơ lược về phương pháp giải kèm theo rất nhiều các ví dụ điển hình.
Phương trình, bất phương trình và hệ phương trình chứa tham số - Lê Bá Bảo
Tài liệu tóm tắt các dạng toán điển hình, các ví dụ mẫu có lời giải chi tiết và phần bài tập rèn luyện chủ đề phương trình, bất phương trình và hệ phương trình chứa tham số, do tác giả Lê Bá Bảo biên soạn. I – LÝ THUYẾT Một số dạng toán và phương pháp tương ứng: Cho hàm số f(x) liên tục trên tập D. Giả sử trên D tồn tại min f(x); max f(x), nếu không ta cần lập bảng biến thiên và đưa ra kết luận. + Dạng 1: Phương trình f(x) = m có nghiệm x ∈ D + Dạng 2: Bất phương trình f(x) ≤ m có nghiệm x ∈ D + Dạng 3: Bất phương trình f(x) ≤ m nghiệm đúng ∀x ∈ D + Dạng 4: Bất phương trình f(x) ≥ m có nghiệm x ∈ D + Dạng 5: Bất phương trình f(x) ≥ m nghiệm đúng ∀x ∈ D + Dạng 6: Cho hàm số y = f(x) đơn điệu trên tập D. Khi đó f(u) = f(v) ⇔ u = v [ads] THUẬT TOÁN : Để giải các bài toán tìm giá trị tham số m để phương trình (PT), bất phương trình (BPT) có nghiệm ta có thể thực hiện theo các bước sau: Thuật toán 1: Đối với bài toán không cần đặt ẩn phụ + Bước 1: Biến đổi đưa phương trình về dạng f(x) = g(m) (hoặc f(x) ≥ g(m); hoặc f(x) ≤ g(m)) + Bước 2: Lập bảng biến thiên của hàm số y = f(x) có tập xác đinh D, suy ra min f(x), max f(x) nếu có + Bước 3: Sử dụng các nhận xét và phương pháp giải phương trình, bất phương trình, đưa ra kết luận Thuật toán 2: Đối với bài toán đặt ẩn phụ + Bước 1: Đặt ẩn phụ t = φ(x). Từ điều kiện ràng buộc của x suy ra miền giá trị t = φ(x). Giả sử: ∀x ∈ D ⇒ t ∈ X + Bước 2: Lúc này, biến đổi đưa phương trình về dạng f(t) = h(m) (hoặc f(t) ≥ h(m) hoặc f(t) ≤ h(m)). Lúc này biện luận điều kiện có nghiệm của phương trình f(t) = h(m) với t ∈ X. Các bước còn lại tương tự thuật toán 1 Với hệ phương trình có chứa tham số, tư duy, hoặc là dựa vào điều kiện có nghiệm của các dạng hệ đặc thù, hoặc đưa về phương trình chứa 1 ẩn (có thể là ẩn phụ) vầ xét điều kiện có nghiệm trên miền giá trị của ẩn (hoặc ẩn phụ) đó. II – CÁC BÀI TẬP MINH HOẠ III – BÀI TẬP TỰ LUYỆN