Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế

Nội dung Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế Bản PDF - Nội dung bài viết Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 - 2023 trường THCS Nguyễn Tri Phương TT Huế Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 - 2023 trường THCS Nguyễn Tri Phương TT Huế Bạn Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 bộ đề kiểm tra chất lượng cuối học kì 1 môn Toán năm học 2022 - 2023 tại trường THCS Nguyễn Tri Phương, thị xã Huế. Kỳ thi đã được tổ chức vào ngày 30 tháng 12 năm 2022. Trích dẫn phần nội dung của đề thi: 1. Cho hàm số bậc nhất y = (m + 1)x - 3 (với x là biến số). a. Tìm giá trị của m để đồ thị hàm số đi qua điểm (-1;1). b. Tìm giá trị của m để đồ thị hàm số song song với đường thẳng y = -x + 3. c. Tìm giá trị của m sao cho tam giác OAB vuông cân (với O là gốc toạ độ). 2. Cho tam giác ABC vuông tại A, có đường cao AH. Hình chiếu vuông góc của H trên các cạnh AB, AC lần lượt là M, N. a. Tính độ dài của AH, AN và góc B khi AB = 3 cm, BC = 5 cm. b. Chứng minh rằng AMHN là hình chữ nhật. c. Chứng minh rằng MN = MH.sin(C) + NH.sin(B). 3. Cho nửa đường tròn (O;R) có đường kính AB. Chọn điểm C trên nửa đường tròn sao cho AC = R. Tiếp tuyến tại A cắt tia BC tại M. a. Chứng minh tam giác ACB là tam giác vuông. Tính khoảng cách từ tâm O đến đoạn thẳng BC. b. Kẻ tiếp tuyến thứ hai MD của nửa đường tròn. Chứng minh rằng OM vuông góc với AD. c. Đường thẳng đi qua O vuông góc với AB cắt tia BD tại N. Chứng minh rằng MN song song với AB. Đây là một đề thi đa dạng, đòi hỏi học sinh cần phải kiến thức vững chắc và khả năng áp dụng linh hoạt để giải quyết các bài toán. Chúc các em sẽ làm tốt trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Bộ đề ôn tập thi học kỳ 1 Toán 9 năm học 2018 - 2019 sở GD và ĐT Bắc Ninh
THCS. giới thiệu đến thầy, cô và các em bộ đề ôn tập thi học kỳ 1 Toán 9 năm học 2018 – 2019 sở GD và ĐT Bắc Ninh, đây là tuyển tập đề thi học kỳ 1 Toán 9 của sở Giáo dục và Đào tạo Bắc Ninh từ năm 1997 đến nay, các đề đều ở dạng tự luận.
Đề kiểm tra học kỳ 1 Toán 9 năm 2018 - 2019 phòng GD và ĐT Bắc Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng toàn thể các em học sinh lớp 9 đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội, đề thi nhằm đánh giá lại toàn diện năng lực môn Toán của học sinh lớp 9 sau giai đoạn học kỳ 1 vừa qua, để làm cơ sở cho việc đánh giá, xếp loại học lực, tuyển chọn học sinh giỏi Toán 9. Đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút (không tính thời gian giáo viên phát đề). [ads] Trích dẫn đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội : + Cho hàm số y = (m – 1)x + 3 có đồ thị là đường thẳng (d). 1) Vẽ đường thẳng (d) khi m = 2. 2) Tìm m để đường thẳng (d) song song với đường thẳng y = 2x + 1. 3) Tính khoảng cách từ gốc tọa độ đến đường thẳng được vẽ ở câu 1. + Cho điểm E thuộc nửa đường tròn tâm O, đường kính MN. Kẻ tiếp tuyến tại N của nửa đường tròn tâm O, tiếp tuyến này cắt đường thẳng ME tại D. 1) Chứng minh rằng: ∆MEN vuông tại E. Từ đó chứng minh DE.DM = DN2. 2) Từ O kẻ OI vuông góc với ME (I ∈ ME). Chứng minh rẳng: 4 điểm O; I; D; N cùng thuộc một đường tròn. 3) Vẽ đường tròn đường kính OD, cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng: DA là tiếp tuyến của nửa đường tròn tâm O. 4) Chứng minh rằng: góc DEA = góc DAM.
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 9 : Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N. a) Chứng minh OM = OP và tam giác NMP cân b) Chứng minh MN là tiếp tuyến của (O) c) Chứng minh AM.BN = R^2 d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất Giải : a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến) OA = OB (bán kính) Góc AOM = BOP (2 góc đối đỉnh) Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng) Xét ΔMNP có: OM = OP (chứng minh trên) NO ⊥ MP (theo giả thiết) Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I [ads] b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy) Xét tam giác OMI và tam giác OPB có: Góc OIM = OBP = 90 OM = OP (chứng minh trên) Góc OMI OPB (chứng minh trên) Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn) Suy ra OI = OB = R Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM) Góc MAO = OBN = 90 (Tính chất tiếp tuyến) Do đó: ΔAMO đồng dạng với ΔBON (g.g) Suy ra AM/BO = AO/BN Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R) d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến) NB ⊥ AB (Tính chất tiếp tuyến) Do đó: MA // NB nên AMNB là hình thang vuông Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2 Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau) BN = NI (Tính chất 2 tiếp tuyến cắt nhau) Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2 Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2 Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R