Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 11 năm 2023 - 2024 cụm trường THPT Gia Lâm Long Biên - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cụm môn Toán 11 năm học 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 11 năm 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Đường thẳng SA vuông góc với mặt phẳng ABCD SA a 2. 1) Tính góc giữa hai đường thẳng AD và SC. 2) Mặt phẳng đi qua A và vuông góc với SC cắt các cạnh SB SC SD lần lượt tại các điểm E F I. Chứng minh đường thẳng IE song song với đường thẳng BD. 3) Gọi H là giao điểm của hai đường thẳng AF và IE. Tính tỉ số AH AF.4) Gọi M là một điểm thay đổi trên cạnh CD M (khác C và D). Mặt phẳng qua M và vuông góc với CD cắt các cạnh SC SB lần lượt tại N và P. Tìm giá trị lớn nhất của diện tích tam giác MNP. + Cho phương trình sin cos 2 cos. 1) Giải phương trình đã cho. 2) Tính tổng các nghiệm của phương trình trong khoảng 0 20.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 - 2019 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 – 2019 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề nhằm tuyển chọn các em học sinh khối 11 có năng khiếu môn Toán để bồi dưỡng, đào tạo và tạo điều kiện để các em được thử sức ở các cuộc thi cấp tỉnh, quốc gia … . Đề thi HSG Toán 11 có lời giải chi tiết và thang điểm. Trích dẫn đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 – 2019 trường THPT Hậu Lộc 4 – Thanh Hóa : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD, có đỉnh A (-3;1), đỉnh C nằm trên đường thẳng Δ: x – 2y – 5 = 0. Trên tia đối của tia CD lấy điểm E sao cho CE = CD, biết N (6;-2) là hình chiếu vuông góc của D lên đường thẳng BE. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn (C): x^2 + y^2 = 25, đường thẳng AC đi qua điểm K (2;1). Gọi M, N là chân các đường cao kẻ từ đỉnh B và C. Tìm tọa độ các đỉnh tam giác ABC, biết phương trình đường thẳng MN là 4x – 3y + 10 = 0 và điểm A có hoành độ âm. + Cho hàm số y = x^2 + 2x – 3 (*) và đường thẳng d: y = 2mx – 4. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số (*). Tìm m để d cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn (x1 + m)/(x2 – 1) + (x2 + m)/(x1 – 1) = -6.
Đề kiểm tra chất lượng đội tuyển HSG Toán 11 năm học 2016 - 2017 trường Lê Lợi - Thanh Hóa lần 1
Đề kiểm tra chất lượng đội tuyển học sinh giỏi môn Toán 11 năm học 2016 – 2017 trường THPT Lê Lợi – Thanh Hóa lần 1 gồm 6 câu tự luận. Các nội dung thi gồm: phương trình lượng giác, biện luận phương trình ẩn tham số m, giải phương trình vô tỉ, giải hệ phương trình, tổ hợp, hình học tọa độ phẳng và hình học không gian. Đề thi có lời giải chi tiết.