Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL giữa học kì 1 Toán 8 năm 2020 2021 phòng GDĐT Hà Đông Hà Nội

Thứ Năm ngày 05 tháng 11 năm 2020, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa học kì 1 môn Toán lớp 8 năm học 2020 – 2021. Đề KSCL giữa học kì 1 Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian học sinh làm bài thi là 60 phút. Trích dẫn đề KSCL giữa học kì 1 Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội : + Thực hiện phép chia rồi tính giá trị biểu thức. + Cho tam giác ABC nhọn. Các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm của BC. Điểm P đối xứng với điểm H qua đường thẳng BC. Điểm Q đối xứng với điểm H qua điểm M. a) Chứng minh PQ // BC. Khi đó, tứ giác DMQP là hình gì? Vì sao? b) Chứng minh tứ giác HCQB là hình bình hành. Tính số đo các góc ACO và ABO. c) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng điểm O cách đều năm điểm A, B, P, Q, C. + Tìm giá trị nhỏ nhất của biểu thức P.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 8 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 8, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 8 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho tam giác ABC, gọi M, N lần lượt là trung điểm của AB, AC. a) Tứ giác BCNM là hình gì? Vì sao? b) Gọi Q là trung điểm của NC. Đường thẳng qua Q song song với BC cắt BN tại E. Đường thẳng qua C song song với BN cắt đường thẳng QE tại K. Chứng minh rằng EK = BC. c) Đường thẳng QE cắt CM tại F. Chứng minh EF = 1/4.BC. d) Đường thẳng qua E vuông góc với AB cắt đường thẳng qua F vuông góc với AC tại I. Chứng minh tam giác BIC cân. + Chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến: A = (x – 3)^3 – x(x^2 + 27) + (3x)^2. + Tìm giá trị nhỏ nhất của biểu thức sau: Q = 3x^2 + 2y^2 + 4z^2 + 2xy + 4yz + 4xz – 4x – 2y + 5.