Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán trường THCS Giảng Võ - Hà Nội

Thứ Năm ngày 28 tháng 05 năm 2020, trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Đề thi thử vào lớp 10 môn Toán trường THCS Giảng Võ – Hà Nội gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử vào lớp 10 môn Toán trường THCS Giảng Võ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tại hội khỏe phù đổng của thành phố Hà Nội, có 56 đội bóng đã đăng ký tham gia. Lúc đầu ban tổ chức dự kiến chia 56 đội thành các bảng đấu với số đội ở mỗi bảng bằng nhau. Tuy nhiên, đến ngày bốc thăm chia bảng thì có 1 đội không tham dự được, vì vậy ban tổ chức quyết định tăng thêm ở mỗi bảng 1 đội, do đó tổng số bảng đấu giảm đi 3 bảng. Hỏi số bảng dự kiến lúc đầu là bao nhiêu? [ads] + Người ta thả một quả trứng vào cốc thủy tinh hình trụ có chứa nước, trứng chìm hoàn toàn xuống đáy cốc và nằm ngang, chứng tỏ qua trứng đó còn tươi (được đẻ từ 1 đến 2 ngày). Em hãy tính thể tích quả trứng đó biết diện tích đáy của cột nước hình trụ là 16,7 cm2 và nước trong cốc dâng thêm 8,2 mm. + Cho tứ giác ABCD nội tiếp (O) đường kính AD, gọi E là giao điểm của AC và BD. Kẻ EF vuông góc với AD tại F. a. Chứng minh tứ giác ABEF nội tiếp được đường tròn. b. Chứng minh CA là tia phân giác của góc BCF. c. Đường tròn ngoại tiếp ABFC cắt BD ở M, gọi N là giao điểm của FC và BD. Chứng minh OM // AC và FM là tiếp tuyến của đường tròn ngoại tiếp ABFN.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo – Vĩnh Phúc lần 1 gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Hai vòi nước cùng chảy vào một cái bể không có nước thì trong 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được 2/3 bể nước. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể. [ads] + Cho đường tròn (O), M là một điểm nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn, chỉ rõ bán kính của đường tròn đó. b) PR = RS.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS An Đà - Hải Phòng lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS An Đà – Hải Phòng lần 1 gồm 5 câu tự luận. Trích một số bài toán trong đề: + Chào mừng Lễ hội Hoa phượng đỏ năm 2017. Hội mĩ thuật Hải Phòng thiết kế một Pano quảng cáo có dạng là một hình chữ nhật. Hình chữ nhật đó có chu vì bằng 68 m và diện tích bằng 273 m2. Em hãy cho biết kích thước của tấm Pano quảng cáo hình chữ nhật ở trên có đạt “Tỉ lệ vàng” hay không ? (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O; R) và dây BC cố định không đi qua tâm O. A là điểm bất kỳ trên cung lớn BC. Ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại điểm H. [ads] a) Chứng minh các tứ giác HDBF, BCEF nội tiếp b) Chứng minh DA là phân giác của góc EDF c) Gọi K là điểm đối xứng của A qua tâm O. Chứng minh HK đi qua trung điểm của đoạn BC d) Giả sử góc BAC bằng 60 độ. Chứng minh tam giác AHO là tam giác cân
Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán
Nội dung Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bản PDF - Nội dung bài viết Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bộ tài liệu này bao gồm 32 trang với 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Trong số các đề thi có hướng dẫn giải chi tiết giúp cho việc học tập và ôn tập hiệu quả hơn.