Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lượng giác và phương trình lượng giác Toán 11 GDPT 2018

Tài liệu gồm 200 trang, bao gồm kiến thức trọng tâm, các dạng toán thường gặp và bài tập chuyên đề hàm số lượng giác và phương trình lượng giác môn Toán 11 chương trình GDPT 2018. Bài 1 . Góc lượng giác. Giá trị lượng giác của góc lượng giác 2. A Góc lượng giác 2. 1. Góc hình học và số đo của chúng 2. 2. Góc lượng giác và số đo của chúng 2. B Giá trị lượng giác của góc lượng giác 2. 1. Đường tròn lượng giác 2. 2. Giá trị lượng giác của góc lượng giác 3. C Giá trị lượng giác của các góc có liên quan đặc biệt 3. D Các dạng toán thường gặp 4. + Dạng 1. Chuyển đổi đơn vị độ – rađian 4. 1. Ví dụ mẫu 4. 2. Bài tập tự luyện 6. 3. Câu hỏi trắc nghiệm 7. + Dạng 2. Độ dài của một cung tròn 9. 1. Ví dụ mẫu 9. 2. Bài tập tự luyện 10. 3. Câu hỏi trắc nghiệm 12. + Dạng 3. Số đo của một góc lượng giác 13. 1. Ví dụ mẫu 14. 2. Bài tập tự luyện 15. 3. Câu hỏi trắc nghiệm 17. + Dạng 4. Biểu diễn góc lượng giác trên đường tròn lượng giác 18. 1. Ví dụ mẫu 19. 2. Bài tập tự luyện 22. 3. Câu hỏi trắc nghiệm 28. + Dạng 5. Tính giá trị lượng giác của góc lượng giác bằng định nghĩa và xét dấu của các giá trị lượng giác 31. 1. Ví dụ mẫu 32. 2. Bài tập tự luyện 34. 3. Câu hỏi trắc nghiệm 36. + Dạng 6. Cho một giá trị lượng giác của góc, tính các giá trị còn lại hay một biểu thức lượng giác 37. 1. Ví dụ mẫu 37. 2. Bài tập tự luyện 39. 3. Câu hỏi trắc nghiệm 41. + Dạng 7. Giá trị lượng giác của các góc có liên quan đặc biệt 43. 1. Ví dụ mẫu 44. 2. Bài tập tự luyện 46. 3. Câu hỏi trắc nghiệm 49. + Dạng 8. Chứng minh đẳng thức lượng giác 52. 1. Ví dụ mẫu 52. 2. Bài tập tự luyện 52. 3. Câu hỏi trắc nghiệm 54. Bài 2 . Các phép biến đổi lượng giác 56. A Tóm tắt lý thuyết 56. 1. Công thức cộng 56. 2. Công thức nhân đôi 56. 3. Công thức hạ bậc 56. 4. Công thức nhân ba 56. 5. Công thức biến đổi tổng thành tích 56. 6. Công thức biến đổi tích thành tổng 56. B Các dạng toán thường gặp 56. + Dạng 1. Áp dụng công thức cộng 56. 1. Ví dụ mẫu 57. 2. Bài tập tự luyện 59. 3. Câu hỏi trắc nghiệm 64. + Dạng 2. Áp dụng công thức nhân đôi, hạ bậc 68. 1. Ví dụ mẫu 68. 2. Bài tập tự luyện 71. 3. Câu hỏi trắc nghiệm 76. + Dạng 3. Công thức biến đổi 78. 1. Ví dụ mẫu 79. 2. Bài tập tự luyện 81. 3. Câu hỏi trắc nghiệm 86. + Dạng 4. Nhận dạng tam giác 95. 1. Ví dụ mẫu 95. 2. Bài tập rèn luyện 95. 3. Câu hỏi trắc nghiệm 97. Bài 3 . Hàm số lượng giác và đồ thị 99. A Kiến thức cần nhớ 99. 1. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn 99. 2. Hàm số y = sin x 99. 3. Hàm số y = cos x 99. 4. Hàm số y = tan x 100. 5. Hàm số y = cot x 100. + Dạng 1. Tìm tập xác định của hàm số lượng giác 101. 1. Ví dụ mẫu 101. 2. Bài tập tự luyện 102. 3. Câu hỏi trắc nghiệm 103. + Dạng 2. Tính chẵn lẻ của hàm số 106. 1. Ví dụ mẫu 106. 2. Bài tập tự luyện 108. 3. Câu hỏi trắc nghiệm 109. + Dạng 3. Sự biến thiên của hàm số lượng giác và các bài toán về đồ thị hàm số lượng giác 111. 1. Ví dụ mẫu 112. 2. Bài tập tự luyện 113. 3. Câu hỏi trắc nghiệm 124. + Dạng 4. Xét tính tuần hoàn và tìm chu kỳ của hàm số lượng giác 128. 1. Ví dụ mẫu 129. 2. Bài tập tự luyện 129. 3. Câu hỏi trắc nghiệm 130. + Dạng 5. Tìm giá trị lớn nhất – giá trị nhỏ nhất 132. 1. Ví dụ mẫu 132. 2. Bài tập tự luyện 134. 3. Câu hỏi trắc nghiệm 136. Bài 4 . Phương trình lượng giác cơ bản 139. A Phương trình tương đương 139. B Phương trình sin x = m 139. C Phương trình cos x = m 140. D Phương trình tan x = m 140. E Phương trình cot x = m 140. + Dạng 1. Điều kiện có nghiệm của phương trình lượng giác cơ bản 140. 1. Ví dụ mẫu 141. 2. Bài tập tự luyện 141. 3. Câu hỏi trắc nghiệm 142. + Dạng 2. Phương trình lượng giác cơ bản 144. 1. Ví dụ mẫu 144. 2. Bài tập tự luyện 146. 3. Câu hỏi trắc nghiệm 155. + Dạng 3. Phương trình đưa về phương trình lượng giác cơ bản 162. 1. Ví dụ mẫu 162. 2. Bài tập tự luyện 164. 3. Câu hỏi trắc nghiệm 171. + Dạng 4. Sự tương giao của các đồ thị hàm số lượng giác 175. 1. Ví dụ mẫu 175. 2. Bài tập tự luyện 175. + Dạng 5. Bài toán thực tế 176. 1. Ví dụ mẫu 176. 2. Bài tập tự luyện 179. 3. Câu hỏi trắc nghiệm 182. Bài 5 . Bài tập cuối chương I 186. A Bài tập tự luận 186. B Bài tập trắc nghiệm ôn tập 189. 1. Đề số 1 189. 2. Đề số 2 190.

Nguồn: toanmath.com

Đọc Sách

Tập giá trị và GTLN - GTLN của hàm số lượng giác
Tài liệu gồm 23 trang, được biên soạn bởi quý thầy, cô giáo nhóm Nhóm Word – Biên Soạn Tài Liệu, hướng dẫn phương pháp giải bài toán trắc nghiệm tìm tập giá trị và giá trị lớn nhất – giá trị nhỏ nhất (GTLN – GTLN / max – min) của hàm số lượng giác, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 1: Hàm số lượng giác và phương trình lượng giác. Nội dung tài liệu tập giá trị và GTLN – GTLN của hàm số lượng giác: I. PHƯƠNG PHÁP TÌM GTLN – GTLN CỦA HÀM SỐ LƯỢNG GIÁC 1. Các kiến thức về giá trị lớn nhất, giá trị nhỏ nhất: Cho hàm số y = f(x) xác định trên miền D ⊂ R. a. Số thực M được gọi là giá trị lớn nhất của hàm số y = f(x) trên D nếu: f(x) =< M với mọi x thuộc D và tồn tại x0 thuộc D sao cho f(x0) = M. b. Số thực m được gọi là giá trị nhỏ nhất của hàm số y = f(x) trên D nếu: f(x) >= m với mọi x thuộc D và tồn tại x0 thuộc D sao cho f(x0) = m. 2. Một số kiến thức ta sử dụng trong các bài toán này: a) Dựa vào tập giá trị của hàm số lượng giác. b) Bảng biến thiên của hàm số lượng giác. c) Kỹ thuật sử dụng máy tính cầm tay. [ads] II. BÀI TẬP TRẮC NGHIỆM Tuyển chọn câu hỏi và bài tập trắc nghiệm tìm tập giá trị của hàm số lượng giác, tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác, có đáp án và lời giải chi tiết, với đầy đủ 04 mức độ nhận thức: Mức độ 1 (Nhận biết), Mức độ 2 (Thông hiểu), Mức độ 3 (Vận dụng), Mức độ 4 (Vận dụng cao).
Chuyên đề hàm số lượng giác và phương trình lượng giác - Phùng Hoàng Em
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Phùng Hoàng Em, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm có đáp án chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 1. 1. HÀM SỐ LƯỢNG GIÁC. A KIẾN THỨC CẦN NHỚ. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Tìm tập xác định của hàm số lượng giác. Dạng 2. Tính chẵn lẻ của hàm số. Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất. C BÀI TẬP TRẮC NGHIỆM. 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. A KIẾN THỨC CẦN NHỚ. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Giải các phương trình lượng giác cơ bản. Dạng 2. Giải các phương trình lượng giác dạng mở rộng. Dạng 3. Giải các phương trình lượng giác có điều kiện xác định. Dạng 4. Giải các phương trình lượng giác trên khoảng (a;b) cho trước. C BÀI TẬP TRẮC NGHIỆM. [ads] 3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP. A KIẾN THỨC CẦN NHỚ. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác. Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác. Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx. Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx. Dạng 5. Phương trình chứa sinx±cos x và sinx · cos x. C BÀI TẬP TRẮC NGHIỆM. 4. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác. Dạng 2. Biến đổi asinx + bcosx. Dạng 3. Biến đổi đưa về phương trình tích. Dạng 4. Một số bài toán biện luận theo tham số. B BÀI TẬP TỰ LUYỆN. 5. ĐỀ ÔN TẬP CUỐI CHƯƠNG. A Đề số 1. B Đề số 2. 6. ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ.
Hướng dẫn giải các dạng toán hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 118 trang, bao gồm tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán thường gặp và bài tập các chủ đề trong chương trình Đại số và Giải tích 11 chương 1: hàm số lượng giác và phương trình lượng giác. Nội dung tài liệu hướng dẫn giải các dạng toán hàm số lượng giác và phương trình lượng giác: Chủ đề 1 . Công thức lượng giác cần nắm. Chủ đề 2 . Hàm số lượng giác. + Dạng toán 1. Tìm tập xác định của hàm số lượng giác. + Dạng toán 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác. + Dạng toán 3. Xét tính chẵn lẻ của hàm số lượng giác. [ads] Chủ đề 3 . Phương trình lượng giác. + Dạng toán 1. Sử dụng thành thạo cung liên kết. + Dạng toán 2. Ghép cung thích hợp để áp dụng công thức tích thành tổng. + Dạng toán 3. Hạ bậc khi gặp bậc chẵn của sin và cos. + Dạng toán 4. Xác định nhân tử chung để đưa về phương trình tích. + Dạng toán 5. Phương trình lượng giác đưa về bậc hai và bậc cao cùng một hàm lượng giác. + Dạng toán 6. Phương trình bậc nhất đối với sin và cos. + Dạng toán 7. Phương trình lượng giác đẳng cấp (bậc 2, bậc 3, bậc 4). + Dạng toán 8. Phương trình lượng giác đối xứng. + Dạng toán 9. Một số phương trình lượng giác khác. + Dạng toán 10. Phương trình lượng giác có cách giải đặc biệt. Chủ đề 4 . Bài tập ôn cuối chương I.
135 câu vận dụng cao hàm số lượng giác và phương trình lượng giác ôn thi THPT môn Toán
Tài liệu gồm 13 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 135 câu vận dụng cao (VDC) hàm số lượng giác và phương trình lượng giác có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 135 câu vận dụng cao hàm số lượng giác và phương trình lượng giác ôn thi THPT môn Toán: + Cho phương trình (cos x + sin 2x)/cos 3x + 1 = 0. Khẳng định nào dưới đây là đúng? A Điều kiện xác định của phương trình là cos x(3 + 4 cos2 x) khác 0. B Phương trình đã cho vô nghiệm. C Nghiệm âm lớn nhất của phương trình là x = −π/2. D Phương trình tương đương với phương trình (sin x − 1) (2 sin x − 1) = 0. + Cho phương trình 3√tan x + 1(sin x + 2 cos x) = m(sin x + 3 cos x). Có tất cả bao nhiêu giá trị nguyên của m thuộc đoạn [−2018; 2018] để phương trình trên có nghiệm duy nhất x ∈ (0;π/2)? + Trong mặt phẳng với hệ tọa độ Oxy, cho parabol (P) : y = x2 − 4 và parabol (P0) là ảnh của (P) qua phép tịnh tiến theo −→v = (0; b), với 0 < b < 4. Gọi A, B là giao điểm của (P) với Ox, M, N là giao điểm của (P0) với Ox, I, J lần lượt là đỉnh của (P) và (P0). Tìm tọa độ điểm J để diện tích tam giác IAB bằng 8 lần diện tích tam giác JMN.