Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội

Nội dung Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Trong kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên Khoa học Tự nhiên, Đại học Quốc gia Hà Nội năm 2019, môn Toán đã được tổ chức vào Chủ Nhật ngày 26 tháng 05. Đề thi bao gồm 4 bài toán dạng tự luận, thời gian làm bài được giới hạn trong 120 phút. Một trong những bài toán được trích dẫn từ đề tuyển sinh là về hình vuông ABCD và đường tròn (O) nội tiếp hình vuông ABCD. Để giải bài toán này, thí sinh cần chứng minh rằng năm điểm A, F, O, C, E cùng nằm trên một đường tròn. Tiếp theo, thí sinh cần chứng minh rằng giao điểm của đường thẳng FB và đường tròn (O) là trung điểm của đoạn thẳng BG. Bài toán còn yêu cầu chứng minh rằng trực tâm tam giác GAF nằm trên đường tròn (O). Bài toán thứ hai yêu cầu tìm giá trị nhỏ nhất của biểu thức M = (x^2 + 4)/(y^2 + 1), với điều kiện 1 ≤ y ≤ 2, xy + 2 ≥ 2y. Cuối cùng, bài toán cuối cùng đưa ra một phương trình đối với các số nguyên x, y, và yêu cầu tìm tất cả các cặp số nguyên thỏa mãn phương trình đó. Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN Hà Nội năm 2019 là một thách thức đối với các em học sinh làm Toán. Để đạt điểm cao trong kỳ thi, thí sinh cần chuẩn bị kỹ lưỡng và thực hành nhiều bài tập.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên Tin) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 – 2023 sở GD&ĐT Quảng Nam : + Cho đường tròn O và điểm I nằm ngoài đường tròn đó. Từ điểm I kẻ hai tiếp tuyến IA IB với đường tròn O (A B là các tiếp điểm). a) Chứng minh tứ giác OAIB nội tiếp đường tròn. b) Qua A kẻ đường thẳng song song với IB cắt đường tròn O tại điểm thứ hai là C (C khác A). Đường thẳng IC cắt đường tròn O tại điểm thứ hai là E (E khác C). Đường thẳng AE cắt IB tại K. Chứng minh 2 KB AK KE. c) Đường thẳng IC cắt AB tại D. Chứng minh IE DE  IC DC. + Cho parabol 2 P y x và đường thẳng d y x m 2 (m là tham số). Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt sao cho một trong hai giao điểm đó có hoành độ bằng 1. + Cho phương trình 2 x x m 6 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt 1 2 x x thoả mãn 2 2 1 1 2 2 2 2 38 x x x x.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) nội tiếp trong đường tròn (O). Dựng đường kính NP của đường tròn (O) vuông góc với BC tại M (P nằm trên cung nhỏ BC). Tia phân giác của ABC cắt AP tại I. a) Chứng minh PI = PB. b) Chứng minh IMB = INA. + Cho tam giác nhọn ABC cân tại A và có tâm đường tròn ngoại tiếp là O. Lấy điểm D bên trong tam giác ABC sao cho BDC = 2BAC (AD không vuông góc với BC). a) Chứng minh bốn điểm B, C, D, O cùng nằm trên một đường tròn. b) Chứng minh OD là đường phân giác ngoài của BDC và tổng BD + CD bằng hai lần khoảng cách từ A đến đường thẳng OD. + Cho parabol 2 P 2 y x và đường thẳng (d): y ax b. Tìm các hệ số a b biết rằng (d) đi qua điểm 3 A 1 2 và có đúng một điểm chung với (P).
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Quảng Bình : + Từ điểm A ở bên ngoài đường tròn (O) kẻ hai tiếp tuyến AM AN với (O) (M N là các tiếp điểm). Gọi E là trung điểm của AN, C là giao điểm của ME với (O) (C khác M) và H là giao điểm của MN và AO. a) Chứng minh tứ giác HCEN nội tiếp. b) Gọi D là giao điểm của AC với (O) (D khác C). Chứng minh tam giác MND là tam giác cân. c) Gọi I là giao điểm của NO với (O) (I khác N ); K là giao điểm của MD và AI. Tính tỉ số KM KD. + Cho phương trình 2 x mx 2 1 3 0 1 (với m là tham số). Tìm tất cả các giá trị nguyên của m để phương trình (1) có hai nghiệm 1 2 x x thỏa mãn 1 2 x x 2 5. + Cho abc là độ dài ba cạnh của một tam giác. Chứng minh rằng: 222 abc abc.
Đề vào 10 môn Toán (chuyên Tin) 2022 - 2023 trường chuyên Hùng Vương - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Tin) năm học 2022 – 2023 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề vào 10 môn Toán (chuyên Tin) 2022 – 2023 trường chuyên Hùng Vương – Phú Thọ : + Cho hai số thực a b phân biệt. Quanh đường tròn viết n số thực đôi một khác nhau 3 n sao cho mỗi số bằng tổng của hai số đứng liền kề nó. Tìm n và các số được viết nếu hai số đầu tiên được viết lần lượt là a và b. + Cho tam giác ABC nội tiếp đường tròn (O) có đường cao 1 AA đường trung tuyến BB1 và đường phân giác trong 1 CC. Gọi DEF lần lượt là giao điểm của 11 1 AA BB CC với (O). Biết ABC 111 là tam giác đều. a) Chứng minh rằng tam giác ABC đều. b) Gọi M là trung điểm của đoạn thẳng CE N là trung điểm của đoạn thẳng CD I là giao điểm của AN và FM. Tính AIF. c) Tia CI cắt AF và (O) lần lượt tại J và K. Chứng minh rằng I là trung điểm của CK. Tính tỉ số JA JF. + Chứng minh rằng nếu m n là hai số tự nhiên thỏa mãn 2 2 2022 2023 mm nn thì 2022 1 m n là số chính phương.