Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bình Thuận

Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Thuận tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Thuận gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Thuận : + Cho hàm số y = mx + n có đồ thị là (d). Tìm giá trị m và n biết (d) song song với đường thẳng (d’): y = x + 3 và đi qua điểm M (2;4). + Lớp 9A có 80 quyển vở dự định khen thưởng học sinh giỏi cuối năm. Thực tế cuối năm tăng thêm 2 học sinh giỏi, nên mỗi phần thưởng giảm đi 2 quyển vở so với dự định. Hỏi cuối năm lớp 9A có bao nhiêu học sinh giỏi, biết mỗi phần thưởng có số quyển vở bằng nhau. [ads] + Cho nửa đường tròn (O) đường kính AB = 2R. Trên đoạn thẳng OB lấy điểm M (M khác O và B). Trên nửa đường tròn (O) lấy điểm N (N khác A và B). Đường thẳng vuông góc với MN tại N cắt các tiếp tuyến Ax, By của nửa đường tròn (O) lần lượt ở C và D (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). a. Chứng minh tứ giác ACNM nội tiếp. b. Chứng minh AN.MD = NB.CM. c. Gọi E là giao điểm của AN và CM. Đường thẳng qua E và vuông góc với BD, cắt MD tại F. Chứng minh N, F, B thẳng hàng. d. Khi góc ABN = 60 độ, tính theo R diện tích của phần nửa hình tròn tâm O bán kính R nằm ngoài ∆ABN.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử lớp 10 năm 2019 - 2020 môn Toán trường Trần Nhân Tông - Hà Nội
Chủ Nhật ngày 07 tháng 04 năm 2019, trường THPT Trần Nhân Tông – Hà Nội tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 khối THPT năm học 2019 – 2020 dành cho các em học sinh lớp 9. Kỳ thi nhằm giúp các em học sinh lớp 9 đăng ký dự thi được tham gia thử sức, qua đó các em sẽ nắm được lực học hiện tại của bản thân, đồng thời làm quen với kỳ thi và nắm được dạng đề môn Toán. Đề thi thử lớp 10 năm 2019 – 2020 môn Toán trường Trần Nhân Tông – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử lớp 10 năm 2019 – 2020 môn Toán trường Trần Nhân Tông – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một hình chữ nhật có diện tích bằng 120m. Nếu tăng chiều rộng thêm 2m đồng thời giảm chiều dài đi 5m, thì thu được một hình vuông. Tìm chiều dài và chiều rộng của hình chữ nhật ban đầu theo mét. [ads] + Cho đường tròn (O) và dây cung BC cố định không đi qua O. A là một điểm di động trên cung lớn BC (AB < AC) sao cho tam giác ABC nhọn. Các đường cao BE, CF cắt nhau tại H. Gọi K là giao điểm của đường thẳng EF và đường thẳng BC. 1) Chứng minh tứ giác BCEF nội tiếp. 2) Chứng minh KB.KC = KE.KF. 3) Gọi M giao điểm của AK với đường tròn (O) (M khác A). Chứng minh MH vuông  góc với AK. 4) Chứng minh đường thẳng MH luôn đi qua một điểm cố định khi A di động trên cung lớn BC.
Đề thi thử Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Hồng Hà - Hà Nội
Thứ Tư ngày 03 tháng 04 năm 2019, trường THPT Hồng Hà – Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT năm học 2019 – 2019 môn Toán dành cho học sinh lớp 9 trên địa bàn thủ đô Hà Nội, đề được biên soạn dựa trên cấu trúc chung của các đề thi Toán tuyển sinh vào lớp 10 của sở GD&ĐT Hà Nội trong những năm gần đây. Đề thi thử Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Hồng Hà – Hà Nội có mã đề 006 được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi thử Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Hồng Hà – Hà Nội : + Cho hai đường thẳng d1: y = 1/3.x + m + 1/3 và d2: y = -2x – 6m + 5. a) Chứng minh d1 và d2 luôn cắt nhau tại một điểm M, tìm tọa độ của điểm M. b) Tìm m để giao điểm M của d1 và d2 nằm trên parabol (P): y = 9x^2. [ads] + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình. Tháng 2 năm 2019, hai tổ của một phân xưởng may sản xuất được 800 bộ quần áo, sang tháng 3 năm 2019 tổ một vượt mức 20%, tổ hai vì thiếu người nên giảm mức 15% do đó cuối tháng 3 cả hai tổ sản xuất được 785 bộ quần áo. Tính xem trong tháng hai mỗi tổ sản xuất được bao nhiêu bộ quần áo. + Cho đường tròn (O) và dây AB. Vẽ đường kính CD vuông góc với AB tại K (D thuộc cung nhỏ AB). Lấy điểm M thuộc cung nhỏ BC sao cho cung MC nhỏ hơn cung MB. Dây DM cắt AB tại F. Tia CM cắt đường thẳng AB tại E. a) Chứng minh tứ giác DKME nội tiếp. b) Chứng minh KE.KF = KC.KD. c) Tiếp tuyến tại M của (O) cắt AB tại I. Chứng minh tam giác IMF cân, từ đó suy ra IE = IF. d) Chứng minh FB/EB = KA/EK.
Đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long - Hà Nội
Nhằm giúp học sinh ôn tập, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020, ngày 24 tháng 02 năm 2019 vừa qua, trường THPT Thăng Long, Hà Nội đã tiến hành tổ chức kỳ thi thử môn Toán dành cho các em học sinh khối lớp 9. Đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long – Hà Nội gồm 1 trang, đề được biên soạn dựa vào cấu trúc đề Toán tuyển sinh vào lớp 10 THPT năm học 2018 – 2019 của sở GD&ĐT Hà Nội với 5 bài toán tự luận, học sinh làm bài trong 120 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Cho một hình chữ nhật biết khi tăng độ dài của chiều rộng lên 1 cm và chiều dài lên 4 cm thì diện tích hình chữ nhật sẽ tăng thêm 26 cm2 và khi tăng chiều rộng thêm 3 cm đồng thời giảm chiều dài đi 4 cm thì được hình vuông. Tính chiều dài và chiều rộng của hình chữ nhật đã cho. + Cho điểm A thuộc đường thẳng d và đường thẳng d, vuông góc với d tại A. Trên d, lấy điểm O và vẽ đường tròn tâm O bán kính R sao cho R < OA. Cho M là một điểm bất kỳ trên đường thẳng d, vẽ tiếp tuyến MB với đường tròn (O) (B là tiếp điểm). Vẽ dây BC của đường tròn (O) sao cho BC vuông góc với OM và cắt OM tại N. 1) Chứng minh MC là tiếp tuyến của đường tròn (O). 2) Chứng minh năm điểm A, B, C, O, M thuộc cùng một đường tròn. 3) Chứng minh BC.OM = 2BO.BM. Xác định vị trí của điểm M trên đường thẳng d sao cho diện tích từ giác OBMC đạt giá trị nhỏ nhất. 4) Chứng minh rằng khi M di chuyển trên đường thẳng d thì điểm N luôn thuộc một đường cố định.
Bộ đề thi thử vào lớp 10 môn Toán năm 2018 trường Chu Văn An - Sơn La
Bộ đề thi thử vào lớp 10 môn Toán năm 2018 trường TH, THCS & THPT Chu Văn An – Đại học Tây Bắc – Sơn La gồm 12 trang với 12 đề thi, các đề được biên soạn theo hình thức tự luận, bộ đề nhằm giúp các em học sinh lớp 9 ôn tập và rèn luyện môn Toán để chuẩn bị cho kỳ thi vào lớp 10.