Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề phân số

Nội dung Phương pháp giải các dạng toán chuyên đề phân số Bản PDF - Nội dung bài viết Tài liệu hướng dẫn giải các dạng toán chuyên đề phân sốPhân loại nội dung tài liệu Tài liệu hướng dẫn giải các dạng toán chuyên đề phân số Tài liệu này được biên soạn bởi thầy giáo Ngô Nguyễn Thanh Duy, với 75 trang tương ứng với 15 bài học, phân loại và hướng dẫn giải các dạng toán chuyên đề về phân số trong chương trình Số học 6. Phân loại nội dung tài liệu Bài 1. Mở rộng khái niệm phân số: Đội biểu diễn phân số của một hình, viết các phân số, tính giá trị của phân số, biểu thị số đo dưới dạng phân số, tìm điều kiện để phân số tồn tại. Bài 2. Phân số bằng nhau: Nhận biết cặp phân số bằng nhau, không bằng nhau, tìm số chưa biết trong đẳng thức của hai phân số. Bài 3. Tính chất cơ bản của phân số: Áp dụng tính chất cơ bản để viết các phân số bằng nhau, giải thích lí do bằng nhau của các phân số. Bài 4. Rút gọn phân số: Rút gọn phân số, tìm phân số tối giản, chứng minh một phân số là tối giản. Bài 5. Quy đồng mẫu nhiều phân số: Quy đồng mẫu các phân số, giải bài toán về quy đồng mẫu. Bài 6. So sánh phân số: So sánh các phân số cùng mẫu và không cùng mẫu. Bài 7. Phép cộng phân số: Cộng hai phân số, điền dấu thích hợp vào ô vuông, tìm số chưa biết trong đẳng thức có chứa phép cộng phân số. Bài 8. Tính chất cơ bản của phép cộng phân số: Áp dụng các tính chất của phép cộng, cộng nhiều phân số, rèn luyện kĩ năng cộng hai phân số. Bài 9. Phép trừ phân số: Tìm số đối, trừ một phân số cho một phân số, tìm số hạng chưa biết trong một tổng hoặc hiệu. Bài 10. Phép nhân phân số: Thực hiện phép nhân phân số, viết phân số dưới dạng tích của hai phân số. Bài 11. Tính chất cơ bản của phép nhân phân số: Thực hiện phép nhân, tính giá trị biểu thức, giải bài toán dẫn đến phép nhân phân số. Bài 12. Phép chia phân số: Tìm số nghịch đảo, thực hiện phép chia phân số, viết phân số dưới dạng thương của hai phân số. Bài 13. Hỗn số, số thập phân, phần trăm: Viết phân số dưới dạng hỗn số, số thập phân, phần trăm, cộng trừ hỗn số, nhân chia hỗn số, tính giá trị của biểu thức số. Bài 14. Tìm giá trị phân số của một số: Tìm giá trị phân số của một số cho trước. Bài 15. Tìm một số biết giá trị phân số của nó: Tìm một số khi biết giá trị phân số của nó. Bài 16. Tìm tỉ số của hai số: Các bài tập liên quan đến tỉ số của hai số, tỉ số phần trăm, tỉ lệ xích. Bài 17. Biểu đồ phần trăm: Dựng biểu đồ phần trăm, đọc biểu đồ, tính tỉ số phần trăm của các số.

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm mở rộng phân số, phân số bằng nhau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề mở rộng phân số, phân số bằng nhau, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm phân số. Với a b Z b 0 ta gọi a b là một phân số trong đó a là tử số (tử) và b là mẫu số (mẫu ) của phân số. Chú ý: Mọi số nguyên đều viết được dưới dạng phân số với mẫu số là 1 1 a a. 2. Hai phân số bằng nhau. Quy tắc bằng nhau của hai phân số a c b d nếu a d b c. 3. Tính chất cơ bản của phân số. Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Nếu chia cả tử và mẫu của một phân số với cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: PHÂN SỐ. DẠNG 2: PHÂN SỐ BẰNG NHAU. DẠNG 3: TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ. DẠNG 4: RÚT GỌN PHÂN SỐ, PHÂN SỐ TỐI GIẢN.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có tâm đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có tâm đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT O là trung điểm của đoạn thẳng AB ta nói hai điểm A và B đối xứng nhau qua O. Hình có tâm đối xứng. Tâm đối xứng. Hình bình hành ABCD là hình có tâm đối xứng và giao điểm O của hai đường chéo là tâm đối xứng của hình bình hành ABCD. Đường tròn (O) là hình có tâm đối xứng. Tâm O là tâm đối xứng của đường tròn (O). B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có trục đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có trục đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm hình có trục đối xứng. – Cho hình (H). Nếu có một đường thẳng d chia hình (H) thành hai phần bằng nhau mà khi “gấp” hình theo đường thẳng d thấy hai phần đó “chồng khít” lên nhau thì hình (H) được gọi là hình có trục đối xứng. – Đường thẳng d nói trên được gọi là trục đối xứng của hình (H). 2. Chú ý. – Hình có trục đối xứng còn được gọi là hình đối xứng trục. – Không phải hình nào cũng đều có trục đối xứng. – Một hình có thể có một, hai, ba, … trục đối xứng, có thể có vô số trục đối xứng. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM