Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa

Nội dung Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT Quốc Gia 2022 môn ToánMục lục: Tài liệu ôn thi THPT Quốc Gia 2022 môn Toán Tài liệu này bao gồm 255 trang, được biên soạn bởi Thạc sĩ Toán học Nguyễn Hữu Chung Kiên. Tài liệu được chia thành 28 chuyên đề, mỗi chuyên đề đi theo cấu trúc của 50 câu trắc nghiệm. Ngoài ra, tài liệu còn bao gồm 10 đề thi chuẩn theo cấu trúc đề minh họa môn Toán năm 2022 của Bộ Giáo dục và Đào tạo, cùng với 5 đề thi thử THPT môn Toán từ các trường THPT và Sở Giáo dục và Đào tạo trên cả nước. Mục lục: 1. Hoán vị, chỉnh hợp, tổ hợp 2. Cấp số cộng – Cấp số nhân 3. Xác suất của biến cố 4. Đọc bảng biến thiên, đồ thị 5. Tìm GTLN – GTNN của hàm số trên đoạn 6. Tiệm cận của đồ thị hàm số 7. Khảo sát, nhận dạng hàm số, đồ thị 8. Hàm số lũy thừa, mũ, logarit 9. Phương trình – bất phương trình mũ, logarit 10. Công thức tính nguyên hàm cơ bản 11. Sử dụng tích chất của tích phân 12. Số phức 13. Góc 14. Khoảng cách 15. Thể tích khối đa diện 16. Khối nón 17. Khối trụ 18. Khối cầu 19. Phương pháp tọa độ trong không gian 20. Phương trình mặt phẳng 21. Phương trình đường thẳng 22. Giá trị nguyên thỏa biểu thức mũ, logarit – Vận dụng 23. Phương trình hàm hợp – Vận dụng 24. Max – min số phức – Vận dụng 25. Diện tích hình phẳng – Vận dụng 26. Phương pháp tọa độ trong không gian – Vận dụng 27. Cực trị hàm ẩn – hàm hợp – Vận dụng 28. Hàm đặc trưng 29. Đề thi THPT Quốc Gia 2021 − Lần 2 30. Phát triển đề minh họa 2022 − Đề 1 31. Phát triển đề minh họa 2022 − Đề 2 32. Phát triển đề minh họa 2022 − Đề 3 33. Phát triển đề minh họa 2022 − Đề 4 34. Phát triển đề minh họa 2022 − Đề 5 35. Phát triển đề minh họa 2022 − Đề 6 36. Phát triển đề minh họa 2022 − Đề 7 37. Phát triển đề minh họa 2022 − Đề 8 38. Phát triển đề minh họa 2022 − Đề 9 39. Phát triển đề minh họa 2022 − Đề 10 40. Đề thi thử Sở Giáo dục Hưng Yên 41. Đề thi thử Sở Giáo dục Bà Rịa − Vũng Tàu 42. Đề thi thử Sở Giáo dục Vĩnh Phúc 43. Đề thi thử Sở Giáo dục Hạ Long 44. Đề thi thử Chuyên ĐHSP Hà Nội

Nguồn: sytu.vn

Đọc Sách

Tổng ôn toán vận dụng - vận dụng cao ôn thi THPTQG môn Toán - Lục Trí Tuyên
Tài liệu gồm 60 trang được biên soạn bởi thầy Lục Trí Tuyên tuyển tập 142 bài toán trắc nghiệm mức độ vận dụng và vận dụng cao ôn thi THPT Quốc gia môn Toán, trong đó gồm 35 bài toán thuộc chương trình Toán 11 và 107 bài toán nằm trong chương trình Toán 12, các bài toán đều có đáp án, được phân tích và giải chi tiết.
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 2 Hình học)
Tài liệu gồm 95 trang trình bày lý thuyết cần nhớ, phân dạng toán có hướng dẫn giải và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Hình học ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp, nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Các chuyên đề trong tài liệu : + Chuyên đề 5. Khối đa diện – Thể tích khối đa diện + Chuyên đề 6. Mặt nón – Mặt trụ và Mặt cầu + Chuyên đề 7. Phương pháp tọa độ trong không gian Oxyz [ads] Xem thêm : + Chuyên đề Toán 12 ôn thi THPTQG – Lư Sĩ Pháp (Tập 1: Giải tích) + Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 1 Giải tích)
Tài liệu gồm 153 trang tuyển tập lý thuyết, phân dạng toán và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Giải tích ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. CHUYÊN ĐỀ 1 . ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ §1. SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho + Dạng 2. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó + Dạng 3. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (α; β) §2. CỰC TRỊ CỦA HÀM SỐ + Dạng 1. Tìm các điểm cực trị của hàm số y = f(x) + Dạng 2. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0 + Dạng 3. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán §3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ + Dạng 1. Tìm GTLN – GTNN của hàm số trên đoạn [a; b]. Xét hàm số y = f(x) + Dạng 2. Tìm GTLN – GTNN của hàm số chứa căn thức + Dạng 3. Tìm GTLN – GTNN của hàm số trên một khoảng (a; b) + Dạng 4. Ứng dụng vào bài toán thực tế §4. ĐƯỜNG TIỆM CẬN + Dạng 1: Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên + Dạng 2: Tìm các đường tiệm cận của hàm số nhất biến + Dạng 3: Tìm các đường tiệm đứng của hàm số khác §5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ §6. MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ + Dạng 1. Biện luận số giao điểm của hai đồ thị + Dạng 2. Biện luận số nghiệm của phương trình bằng đồ thị + Dạng 3. Viết phương trình tiếp tuyến + Dạng 4. Sự tiếp xúc của các đường cong [ads] CHUYÊN ĐỀ 2 . HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LÔGARIT. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ – LÔGARIT + Dạng 1. Xét tính đúng sai của một mệnh đề + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit + Dạng 5. Tập xác định của hàm số + Dạng 6. Tính đạo hàm + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế CHUYÊN ĐỀ 3 . NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ 4 . SỐ PHỨC 1. Số phức 2. Các phép toán trên số phức 3. Mối liên hệ giữa z và z‾ 4. Phương trình bậc hai với hệ số thực 5. Cực trị số phức 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z| + Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R, R > 0. Tìm giá trị nhỏ nhất, lớn nhất của z + Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1, r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2| + Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k, k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z| + Dạng 4. Cho hai số phức z1, z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2| Xem thêm :  Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp
Tổng hợp Toán vận dụng cao có lời giải chi tiết - Đoàn Trí Dũng
Tài liệu gồm 51 được biên soạn bởi thầy Đoàn Trí Dũng tổng hợp 160 bài toán vận dụng cao có lời giải chi tiết nhằm giúp học sinh ôn tập đạt điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán, các bài toán thuộc nhiều chủ đề khác nhau được trích dẫn từ các đề thi thử môn Toán.