Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội

Nội dung Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Chào các thầy cô và các em học sinh lớp 9, Sytu xin giới thiệu đến quý vị đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán năm 2022 tại trường Đại học Sư Phạm Hà Nội. Đề thi này sẽ được sử dụng cho mọi thí sinh dự tuyển vào các chuyên ngành, Toán chung, Toán điều kiện và vòng 1 của kỳ thi. Đề thi sẽ diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022. Với sự chuẩn bị cẩn thận, đề thi sẽ có đáp án và lời giải chi tiết do các tác giả uy tín thực hiện, bao gồm Nguyễn Duy Khương, Trịnh Đình Triển, TQĐ, Nguyễn Khang, Nguyễn Hoàng Việt. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh: Trong mặt phẳng tọa độ Oxy, hãy viết phương trình đường thẳng (d): y = ax + b biết (d) đi qua A(2;−1) và song song với đường thẳng y = −3x + 1. Một cửa hàng kinh doanh điện máy sau khi nhập về chiếc tivi, đã bán chiếc tivi và thu được lãi 10% của giá nhập. Nếu cửa hàng tăng giá bán thêm 5% và chiết khấu cho khách 245000 đồng, lãi sẽ lên 12% của giá nhập. Hãy tìm giá tiền khi nhập về của chiếc tivi đó. Cho tam giác ABC đều nội tiếp (O), điểm D thuộc cung AB nhỏ (D khác A,B). Các tiếp tuyến tại B,C của (O) cắt AD theo thứ tự tại E,G. Gọi I là giao điểm của CE và BG. a) Chứng minh rằng △EBC ∽ △BCG. b) Tính số đo góc BIC. Từ đó chỉ ra BIDE là tứ giác nội tiếp. c) Gọi DI ∩ BC = K. Chứng minh rằng: BK2 = KI.KD. Hãy chuẩn bị tâm lý và kiến thức tốt để chinh phục đề thi tuyển sinh năm nay. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào 10 lần 2 năm 2023 - 2024 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Lạc, tỉnh Vĩnh Phúc; đề thi hình thức 20% trắc nghiệm (04 câu) + 80% tự luận (06 câu), thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho Parabol 2 Pyx và đường thẳng dy x m 1 (m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol P tại hai điểm phân biệt có hoành độ 1 2 x x thoả mãn 2 1 12 2 1 2 5 41 1 x x. + Một bác nông dân dự định trồng 250 cây giống gồm cây táo và cây ổi. Nhưng trên thực tế do cải tiến kỹ thuật bác nông dân trồng thêm được 22 cây nữa nên số cây táo được trồng tăng 8%, số cây ổi được trồng tăng 10% so với dự định ban đầu. Hỏi ban đầu bác nông dân dự định trồng bao nhiêu cây táo, bao nhiêu cây ổi? + Cho đường tròn (O;R). Từ một điểm M nằm ngoài đường tròn, kẻ hai tiếp tuyến MA MB đến (O)(A B là các tiếp điểm). Qua A, kẻ đường thẳng song song với MO cắt đường tròn tại E, đường thẳng ME cắt đường tròn tại F, đường thẳng AF cắt MO tại N. a) Chứng minh tứ giác MAOB nội tiếp đường tròn. b) Chứng minh 2 MN NF NA. c) Gọi H là giao điểm giữa MO và AB. Chứng minh MN NH và 2 2 1 HB EF HF MF.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Tương Dương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tương Dương, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Tương Dương – Nghệ An : + Gọi 1 2 x x là hai nghiệm của phương trình 2 x x 5 10. Không giải phương trình hãy tính giá trị của các biểu thức sau: 3 3 1 2 1 1 C x x. + Một sân trường hình chữ nhật có chiều dài hơn chiều rộng 16 mét. Biết rằng hai lần chiều dài kém 5 lần chiều rộng 28 mét. Tính chiều dài và chiều rộng của sân trường? Chiều cao của một hình trụ bằng bán kính đường tròn đáy. Diện tích xung quanh của hình trụ là 314 cm2. Hãy tính thể tích hình trụ đó (làm tròn kết quả đến chữ số thập phân thứ hai). + Từ điểm P nằm ngoài đường tròn (O), vẽ hai tiếp tuyến PM và PN với (O) (M, N là hai tiếp điểm). Vẽ dây cung MQ song song với PN; PQ cắt đường tròn (O) tại điểm thứ hai là A (A khác Q); a) Chứng minh: Tứ giác PMON nội tiếp; b) Chứng minh: MP2 = PA.PQ; c) Tia MA cắt PN tại K. Chứng minh K là trung điểm của NP.
Đề thi thử Toán vào lớp 10 lần 2 năm 2023 trường THCS Quỳnh Lập - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm 2023 trường THCS Quỳnh Lập, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 2 năm 2023 trường THCS Quỳnh Lập – Nghệ An : + Một phân xưởng theo kế hoạch cần phải sản xuất 630 sản phẩm trong một số ngày. Do mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm nên phân xưởng đã hoàn thành kế hoạch sớm hơn quy định 3 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng phải sản xuất bao nhiêu sản phẩm? + Một chai dung dịch rửa tay khô hình trụ cao 12cm, đường kính đáy bằng 5cm. Tính thể tích chai dung dịch đó? (bỏ qua chiều dày của vỏ chai và lấy π ≈3,14). + Cho tam giác ABC vuông cân tại A. Đường tròn đường kính AB cắt BC tại D (D khác B). Lấy điểm M bất kì trên AD. Kẻ MH, MI lần lượt vuông góc với AB, AC (H thuộc AB, I thuộc AC) a) Chứng minh: tứ giác BDMH nội tiếp b) Chứng minh MID = MBC c) Kẻ HK vuông góc với ID (K thuộc ID). Chứng minh: K, M, B thẳng hàng và đường thẳng HK luôn đi qua một điểm cố định khi M di động trên AD.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Cửa Lò - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Cửa Lò, tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Cửa Lò – Nghệ An : + Để hỗ trợ các gia đình gặp khó khăn tại địa phương do ảnh hưởng của thiên tai, một tổ chức thiện nguyện đã dự kiến chở 720 tạ gạo đi ủng hộ, số gạo được chia đều vào một số xe cùng loại. Lúc sắp khởi hành, do được bổ sung thêm hai xe cùng loại; vì vậy so với dự định, mỗi xe chở ít đi 18 tạ gạo. Hỏi lúc đầu ban tổ chức thiện nguyện đã chuẩn bị bao nhiêu xe chở gạo? + Một chiếc lều dã ngoại hình nón bằng vải dù có bán kính đáy là 1,5m và độ dài đường sinh là 2,5m. Tính diện tích xung quanh và thể tích của chiếc lều? + Cho đường tròn (O;R) đường kính AB cố định. Gọi H là điểm bất kỳ thuộc đoạn OA (điểm H khác điểm O và A). Vẽ dây CD vuông góc với AB tại H. Gọi M là điểm bất kỳ thuộc đoạn thẳng CH. Đường thẳng AM cắt (O;R) tại điểm thứ hai là E, tia BE cắt tia DC tại F. a) Chứng minh: BEMH là tứ giác nội tiếp. b) Kẻ Ex là tia đối của tia ED. Chứng minh: FEx = FEC. c) Tìm vị trí của điểm H trên đoạn OA sao cho diện tích tam giác OCH đạt giá trị lớn nhất.