Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 11 năm 2023 - 2024 sở GDĐT Quảng Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2023 – 2024 và chọn đội dự tuyển dự thi chọn học sinh giỏi Quốc gia môn Toán năm học 2024 – 2025 sở Giáo dục và Đào tạo tỉnh Quảng Bình; đề thi gồm bài thi thứ nhất và bài thi thứ hai, có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024. Trích dẫn Đề thi chọn học sinh giỏi Toán 11 năm 2023 – 2024 sở GD&ĐT Quảng Bình : + Một mật khẩu thẻ của ngân hàng X là một dãy gồm 6 chữ số. a) Có bao nhiêu mật khẩu thẻ của ngân hàng X có 6 chữ số khác nhau trong đó có chữ số 6 và chữ số 8. b) Tính số mật khẩu thẻ của ngân hàng X có tổng 6 chữ số bằng 16. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi C’ là trung điểm của SC, M là điểm thuộc cạnh SA, điểm N di động trên cạnh đáy BC (N khác B C). a) Gọi 1 2 G G lần lượt là trọng tâm các tam giác ∆ABC và ∆SBC. Chứng minh rằng G G1 2 song song với mặt phẳng (SAB). b) Mặt phẳng (α) chứa CM’ cắt các cạnh SB SD lần lượt tại B D. Xác định vị trí của điểm M để 2024 SB SD SB SD. c) Mặt phẳng (β) đi qua N đồng thời song song với hai đường thẳng SB và AC. Xác định đa giác tạo bởi giao tuyến của mặt phẳng (β) với các mặt của hình chóp S.ABCD và tìm vị trí của điểm N để đa giác đó có diện tích lớn nhất. + Cho đa giác lồi n đỉnh (4) n. Ta kẻ tất cả các đường chéo. Biết rằng không có 3 đường chéo nào đồng quy tại một điểm thuộc miền trong của đa giác đã cho. Tính số miền đa giác được tạo thành bên trong của đa giác lồi đó (ta chỉ tính các đa giác mà bên trong nó không có điểm nào thuộc đường chéo của đa giác ban đầu).

Nguồn: toanmath.com

Đọc Sách

Đề HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Nhằm kiểm tra khảo sát chất lượng đội tuyển học sinh giỏi Toán lớp 11, vừa qua, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn thi Toán lớp 11 năm học 2019 – 2020. Đề HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;3). Các điểm I (6;6), J(4;5) lần lượt là tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp tam giác ABC. Tìm tọa độ các đỉnh B và C biết hoành độ điểm B lớn hơn hoành độ điểm C. [ads] + Có hai cái hộp đựng tất cả 15 viên bi, các viên bi chỉ có 2 màu đen và trắng. Lấy ngẫu nhiên từ mỗi hộp 1 viên bi. Biết số bi ở hộp 1 nhiều hơn hộp 2, số bi đen ở hộp 1 nhiều hơn số bi đen ở hộp 2 và xác suất để lấy được 2 viên đen là 5/28. Tính xác suất để lấy được 2 viên trắng. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = b, cạnh bên SA vuông góc với đáy. a) Gọi I, J lần lượt là trung điểm của SB và CD. Biết đường thẳng IJ tạo với mặt phẳng (ABCD) một góc 60 độ. Tính độ dài đoạn thẳng SA. b) (α) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M và N. Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. File WORD (dành cho quý thầy, cô):
Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội
Nội dung Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội Bản PDF Sytu giới thiệu đến bạn đọc đề thi Olympic Toán lớp 11 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài thi. Trích dẫn đề Olympic Toán lớp 11 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Trong một hộp kín đựng 100 tấm thẻ như nhau được đánh số từ 1 đến 100. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. [ads] + Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau. Điểm M di động trên cạnh AB, điểm N di động trên cạnh A’D’ sao cho A’N = 2AM. Gọi (a) là mặt phẳng chứa MN và song song với AC. Dựng thiết diện của hình hộp bởi (a) và chứng minh rằng (a) luôn chứa một đường thẳng cố định. + Cho tứ diện ABCD. Chứng minh rằng: (AB + CD)^2 + (AD + BC)^2 > (AC + BD)?.