Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Tân Thới Hòa - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tân Thới Hòa, quận Tân Phú, thành phố Hồ Chí Minh. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Tân Thới Hòa – TP HCM : + Hưởng ứng “Ngày sách và văn hóa đọc Việt Nam năm 2022”, một nhà sách đã có chương trình giảm giá cho tất cả loại sách. Bạn Mai đã đến mua một cuốn sách tham khảo môn Toán và một cuốn sách tham khảo môn Ngữ Văn với tổng giá ghi trên bìa hai quyển sách đó là 440000 đồng. Nhưng do quyển sách tham khảo môn Toán được giảm giá 25% và quyển sách tham khảo môn Ngữ Văn được giảm giá 30% nên bạn Mai chỉ trả 318000 khi mua hai quyển sách đó. Hỏi mỗi quyển sách tham khảo đó giá bao nhiêu sau khi giảm giá? + Lực F của gió khi thổi vuông góc vào cánh buồm tỉ lệ thuận với bình phương vận tốc v của gió, tức F = av2 (a là hằng số). Biết rằng khi vận tốc gió bằng 2m/s thì lực tác động lên cánh buồm của một con thuyền bằng 120N (Niu-tơn). a) Tính hằng số a b) Biết rằng cánh buồm chỉ có thể chịu được một áp lực tối đa là 12000N, hỏi con thuyền có thể đi được trong gió bão với vận tốc gió 90km/h hay không? + Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn sao cho OM > 2R. Từ điểm M vẽ các tiếp tuyến MA, MB (với A, B là các tiếp điểm) và cát tuyến MDE của đường tròn (O) (tia ME nằm giữa hai tia MO và MA; D nằm giữa M và E). Gọi I là trung điểm của DE. a) Chứng minh: tứ giác MAOB nội tiếp. Từ đó suy ra năm điểm A, M, B, O, I cùng thuộc một đường tròn. b) Vẽ đường kính AS của đường tròn (O), các tia SD và SE cắt tia MO lần lượt tại K và N. Chứng minh: MO // BS và DE.NS = BD.NK. c) Chứng minh: tứ giác AKSN là hình bình hành.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2021 - 2022 trường Tạ Quang Bửu - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS và THPT Tạ Quang Bửu, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 03 năm 2022. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2021 – 2022 trường Tạ Quang Bửu – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Một cửa hàng có tổng cộng 28 chiếc tivi và tủ lạnh. Giá mỗi cái tủ lạnh là 15 triệu đồng, mỗi cái tivi là 30 triệu đồng. Nếu bán hết 28 cái tivi và tủ lạnh này chủ cửa hàng sẽ thu được 720 triệu đồng. Hỏi cửa hàng có bao nhiêu cái tivi và tủ lạnh? + Cho nửa đường tròn (O), đường kính AB. Lấy hai điểm C, M bất kỳ thuộc nửa đường tròn sao cho AC = CM (AC và CM khác MB). Gọi D là giao điểm của AC và BM; H là giao điểm của AM và BC. 1. Chứng minh: Tứ giác CHMD nội tiếp. 2. Chứng minh: DA.DC = DB.DM. 3. Tiếp tuyến tại A của đường tròn (O) cắt tia BC tại K. Chứng minh rằng: KD. Gọi Q là giao điểm của DH và AB. Chứng minh rằng: khi điểm C di chuyển trên nửa đường tròn sao cho AC = CM thì đường tròn ngoại tiếp CMQ luôn đi qua một điểm cố định. + Chọn đáp án đúng trong mỗi câu sau (học sinh ghi vào giấy thi phương án lựa chọn. Ví dụ: câu 1 chọn đáp án A, ghi là: 1A).
Đề thi giữa học kỳ 2 Toán 9 năm 2020 - 2021 trường THCS Kim Liên - Nghệ An
Đề thi giữa học kỳ 2 Toán 9 năm 2020 – 2021 trường THCS Kim Liên – Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 90 phút, đề thi có ma trận, đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kỳ 2 Toán 9 năm 2020 – 2021 trường THCS Kim Liên – Nghệ An : + Cho phương trình (m là tham số). a) Giải phương trình với m = 2. b) Tìm m để phương trình (1) có 2 nghiệm. + Hai vòi nước cùng chảy vào một bể cạn thì sau 24 5 giờ đầy bể. Mỗi giờ lượng nước vòi I chảy bằng 3 2 lượng nước chảy được của vòi II. Hỏi nếu mỗi vòi chảy riêng thì sau bao lâu đầy bể? + Cho điểm A nằm ngoài đường tròn O. Từ A kẻ hai tiếp tuyến AB AC và cát tuyến ADE tới đường tròn đó (B C là tiếp điểm; D nằm giữa A và E). Gọi H là giao điểm của AO và BC. a) Chứng minh: Tứ giác ABOC nội tiếp. b) Chứng minh: AH AO AD AE. c) Tiếp tuyến tại D của đường tròn cắt AB AC theo thứ tự ở I và K. Qua điểm O kẻ đường thẳng vuông góc với OA cắt AB tại P và cắt AC tại Q. Chứng minh IP KQ PQ.