Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GDKHCN Bạc Liêu

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GDKHCN Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 sở Bạc Liêu Đề tuyển sinh THPT môn Toán năm 2020-2021 sở Bạc Liêu Vào sáng thứ Ba, ngày 14 tháng 07 năm 2020, Sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2020-2021. Đề tuyển sinh này dành cho thí sinh muốn thi vào các lớp không chuyên, bao gồm 01 trang đề với 04 bài toán tự luận. Thời gian làm bài thi là 120 phút. Để trích dẫn một số câu trong đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của sở Bạc Liêu: 1. Cho parabol (P) có phương trình y = 2x^2 và đường thẳng (d) có phương trình y = 3x + b. Chúng ta cần xác định giá trị của b như thế nào để đường thẳng (d) tiếp xúc với parabol (P). 2. Đề cho phương trình x^2 - (m - 1)x - m = 0 (1) (với m là tham số). Câu hỏi yêu cầu giải phương trình (1) khi m = 4 và chứng minh phương trình (1) luôn có nghiệm với mọi giá trị của m. 3. Đề cũng đưa ra một câu hỏi về đường tròn có đường kính AB = 2R và các đoạn thẳng liên quan đến nó. Thí sinh cần chứng minh các tính chất của các tứ giác và tam giác, cũng như tìm giá trị nhỏ nhất của diện tích tam giác dựa trên R. Với nhiều câu hỏi và yêu cầu phức tạp, đề tuyển sinh THPT môn Toán năm 2020-2021 của sở Bạc Liêu thách thức và đòi hỏi sự tỉ mỉ, logic và kiến thức vững chắc từ thí sinh. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh vào 10 chuyên năm 2019 - 2020 sở GDĐT Hưng Yên (Đề chung)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh vào lớp 10 trường THPT chuyên năm học 2019 – 2020 sở GD&ĐT Hưng Yên, đây là đề thi chung dành cho các thí sinh tham gia dự thi (đề vòng 1). Đề Toán tuyển sinh vào 10 chuyên năm 2019 – 2020 sở GD&ĐT Hưng Yên (Đề chung) gồm có 1 trang, đề được biên soạn theo dạng đề tự luận với 5 bài toán, học sinh có 2 tiếng (120 phút) để hoàn thành bài thi Toán, đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề Toán tuyển sinh vào 10 chuyên năm 2019 – 2020 sở GD&ĐT Hưng Yên (Đề chung) : + Cho tam giác ABC vuông tại A. Vẽ các nửa đường tròn đường kính AB và AC sao cho các nửa đường tròn này không có điểm nào nằm trong tam giác ABC. Đường thẳng d đi qua A cắt các nửa đường tròn đường kính AB và AC theo thứ tự ở M và N (khác điểm A). Gọi I là trung điểm của đoạn thẳng BC. 1) Chứng minh tứ giác BMNC là hình thang vuông. 2) Chứng minh IM = IN. 3) Giả sử đường thẳng d thay đổi nhưng vẫn thỏa mãn điều kiện đề bài. Hãy xác định vị trí của đường thẳng d để chu vi tứ giác BMNC lớn nhất. + Cho hai đường thẳng (d): y = (m – 2)x + m và (Δ): y = -4x + 1. a) Tìm m để (d) song song với (Δ). b) Chứng minh đường thẳng (d) luôn đi qua điểm A(-1;2) với mọi m. c) Tìm tọa độ điểm B thuộc (Δ) sao cho AB vuông góc với (Δ). + Cho phương trình: x^2 – 2(m + 1)x + m^2 + 4 = 0 (1) (m là tham số). 1) Giải phương trình khi m = 2. 2) Tìm m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1^2 + 2(m + 1)x2 = 3m^2 + 16.
Đề Toán tuyển sinh lớp 10 chuyên năm 2019 - 2020 sở GDĐT Nam Định (Đề chung)
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh vào lớp 10 trường THPT chuyên năm học 2019 – 2020 sở Giáo dục và Đào tạo tỉnh Nam Định, đề thi chung (đề 1) được được dành cho các thí sinh dự thi vào các lớp 10 khối chuyên Khoa học Tự nhiên. Đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Nam Định gồm có 5 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi gồm có 01 trang, đề thi có lời giải chi tiết (lời giải được trình bày bởi thầy Nguyễn Mạnh Tuấn, giáo viên Toán trường THCS Cẩm Hoàng, Cẩm Giàng, Hải Dương). [ads] Trích dẫn đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Nam Định : + Một hình trụ có diện tích hình tròn đáy là 9pi cm2, độ dài đường sinh là 6cm. Tính thể tích hình trụ đó. + Tìm tất cả các giá trị của tham số m để đường thẳng y = (m^2 – 1)x + 7 và đường thẳng y = 3x + m + 5 (với m khác ±1) là hai đường thẳng song song. + Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm. Tính độ dài đường cao kẻ từ A xuống cạnh BC.
Đề Toán tuyển sinh lớp 10 chuyên năm 2019 - 2020 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi chính thức môn Toán tuyển sinh vào lớp 10 trường chuyên năm học 2019 – 2020 sở GD&ĐT Đắk Lắk, nhằm tuyển chọn các em học sinh đạt yêu cầu học lực môn Toán vào học tại trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk. Đề Toán tuyển sinh lớp 10 chuyên năm 2019 – 2020 sở GD&ĐT Đắk Lắk gồm 1 trang với 5 bài toán, đề được biên soạn theo dạng tự luận, đề thi gồm 1 trang, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2019, đề thi có lời giải chi tiết. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2019 – 2020 sở GD&ĐT Đắk Lắk : + Cho hình vuông ABCD với tâm O. Gọi M là trung điểm của cạnh AB. Các điểm N, P theo thứ tự thuộc các cạnh BC, CD sao cho MN // AP. Chứng minh rằng: 1) Tam giác ADP đồng dạng với tam giác NBM. 2) BN.DP = OB^2. 3) DO là tiếp tuyến của đường tròn ngoại tiếp tam giác OPN. 4) Ba đường thẳng BD, AN, PM đồng quy. + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = (m – 2)x + 2 với m là tham số và m khác 2. Tìm tất cả các giá trị của m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng 2/3. + Tìm tất cả các giá trị của tham số m để phương trình x^4 – (m – 1)x^2 + m^2 – m – 1 = 0 có đúng ba nghiệm phân biệt.
Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD và ĐT Đắk Lắk
Ngày 07 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020, nhằm tuyển chọn các em học sinh lớp 9 đáp ứng yêu cầu học lực môn Toán, vào học tại các trường THPT trực thuộc sở GD&ĐT tỉnh Đắk Lắk, để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD và ĐT Đắk Lắk bao gồm 05 bài toán, đề thi gồm có 01 trang, đề được biên soạn theo dạng tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD và ĐT Đắk Lắk : + Một cốc nước dạng hình trụ có chiều cao 12cm, bán kính đáy 2cm, lượng nước trong cốc cao 8cm. Người ta thả vào cốc nước 6 viên bi hình cầu có cùng bán kính 1cm và ngập hoàn toàn trong nước làm nước trong cốc dâng lên. Hỏi sau khi thả 6 viên bi vào thì mực nước trong cốc cách miệng cốc bao nhiêu xentimét? (giả sử độ dày của cốc là không đáng kể). + Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y = -x + √2/2. Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung; H là trung điểm của AB. Tính độ dài đoạn thẳng OH (đơn vị đo trên các trục tọa độ là xentimét). + Cho đường tròn (O) hai đường kính AB, CD vuông góc với nhau. Điểm M thuộc cung nhỏ BD sao cho góc BOM = 30 độ. Gọi N là giao điểm của CM và OB. Tiếp tuyến tại M của đường tròn (O) cắt OB, OD kéo dài lần lượt tại E và F. Đường thẳng qua N và vuông góc với AB cắt EF tại P. 1) Chứng minh tứ giác ONMP là tứ giác nội tiếp. 2) Chứng minh tam giác EMN là tam giác đều. 3) Chứng minh: CN = OP. 4) Gọi H là trục tâm tam giác AEF. Hỏi ba điểm A, H, P có thẳng hàng không? Vì sao?