Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chí Linh Hải Dương

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chí Linh Hải Dương Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Chí Linh Hải Dương Sytu xin gửi đến quý thầy cô và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán lớp 8 trong năm học 2022 - 2023 từ phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ Đề giao lưu HSG Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Chí Linh - Hải Dương: Phần bài tập đầu tiên yêu cầu tìm phần dư khi chia đa thức f(x) cho 2x(x+1). Phần thứ hai bài toán đưa ra một bài toán chứng minh về tính chất của số nguyên n khi n là số nguyên lớn hơn 1 và thoả mãn một số điều kiện về số nguyên tố. Phần cuối cùng là một bài toán liên quan đến tam giác ABC nhọn và các đường cao AD, BE, CF cùng với điểm trung điểm M và các đường thẳng đi qua điểm H. Đề thi là cơ hội tốt để các em học sinh lớp 8 rèn luyện kỹ năng giải toán, phân tích và suy luận logic. Hy vọng rằng đề thi sẽ giúp các em hiểu rõ hơn về các kiến thức Toán và phát triển khả năng giải quyết vấn đề một cách logic và tự tin.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG huyện Toán 8 năm 2015 - 2016 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Thái Thụy – Thái Bình; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Thái Thụy – Thái Bình : + Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là cạnh AB vẽ tia Ax, By cùng vuông góc AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a. Chứng minh AB2 = 4 AC.BD. b. Kẻ OM vuông góc CD tại M. Chứng minh AC = CM. c. Từ M kẻ MH vuông góc AB tại H. Chứng minh BC đi qua trung điểm MH. d. Tìm vị trí của C trên tia Ax để diện tích tứ giác ABDC nhỏ nhất. + Cho các số a, b, c, d nguyên dương đôi một khác nhau và thoả mãn. Chứng minh A = abcd là số chính phương. + Gọi a, b, c là độ dài ba cạnh của tam giác thỏa mãn: a3 + b3 + c3 = 3abc. Chứng minh tam giác đều.
Đề thi HSG Toán 8 cấp huyện năm 2015 - 2016 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Nam Trực – Nam Định; đề thi có lời giải và thang chấm điểm. Trích dẫn đề thi HSG Toán 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Nam Trực – Nam Định : + Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. 1) Chứng minh: EA.EB = ED.EC. 2) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD + CM.CA có giá trị không đổi. 3) Kẻ DH vuông góc BC (H thuộc BC). Gọi P, Q lần lượt là trung điểm của các đoạn thẳng BH, DH. Chứng minh CQ vuông góc PD. + Cần dùng ít nhất bao nhiêu tấm bìa hình tròn có bán kính bằng 1 để phủ kín một tam giác đều có cạnh bằng 3, với giả thiết không được cắt tấm bìa. + Cho hai số thực dương x, y thỏa mãn. Tìm giá trị nhỏ nhất của biểu thức Q.
Đề thi học sinh giỏi Toán 8 năm 2014 - 2015 phòng GDĐT Bình Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm 2014 – 2015 phòng GD&ĐT Bình Giang – Hải Dương; đề thi có đáp án, lời giải và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2014 – 2015 phòng GD&ĐT Bình Giang – Hải Dương : + Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. 1) Chứng minh tứ giác BEDF là hình bình hành. 2) Chứng minh rằng: CH.CD = CB.CK. 3) Chứng minh rằng: AB.AH + AD.AK = AC2. + Một người đi xe máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB. + Cho biểu thức A. 1) Tìm ĐKXĐ rồi rút gọn biểu thức A. 2) Tính giá trị của biểu thức A biết |x – 7| = 4.
Đề thi HSG huyện Toán 8 năm 2014 - 2015 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG huyện Toán 8 năm học 2014 – 2015 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. 1. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng. + Phân tích đa thức sau thành nhân tử. + Tìm đa thức f(x) biết rằng: f(x) chia cho x + 2 dư 10, f(x) chia cho x – 2 dư 24, f(x) chia cho x2 – 4 được thương là -5x và còn dư.