Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam Bản PDF Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam

Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 từ sở GD&ĐT Hà Nam. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm theo bảng chính thức do sở Giáo dục và Đào tạo tỉnh Hà Nam công bố.

Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam:
- Cho đường tròn O đường kính AB R=2. Gọi ∆ là tiếp tuyến của O tại A. Trên ∆ lấy điểm M sao cho MA R. Qua M vẽ tiếp tuyến MC (C thuộc đường tròn O, C khác A). Gọi H và D lần lượt là hình chiếu vuông góc của C trên AB và AM. Gọi d là đường thẳng đi qua điểm O và vuông góc với AB. Gọi N là giao điểm của d và BC.
1. Chứng minh OM // BN và MC = NO.
2. Gọi Q là giao điểm của MB và CH, K là giao điểm của AC và OM. Chứng minh đường thẳng QK đi qua trung điểm của đoạn thẳng BC.
3. Gọi F là giao điểm của QK và AM, E là giao điểm CD và OM. Chứng minh tứ giác FEQO là hình bình hành. Khi M thay đổi trên ∆, tìm giá trị lớn nhất của QF EO.
- Giải phương trình 3xy+2xz=3 2021 với x, y và z là các số nguyên.
- Cho hình vuông ABCD có độ dài cạnh bằng 1. Bên trong hình vuông người ta lấy tùy ý 2021 điểm phân biệt A1, A2, A3,... sao cho 2025 điểm A1A2A3... không có ba điểm nào thẳng hàng. Chứng minh rằng từ 2025 điểm trên luôn tồn tại 3 điểm là 3 đỉnh của hình tam giác có diện tích không quá 1.

File WORD (dành cho quý thầy, cô): Download here

Hy vọng đề tuyển sinh này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi và đạt kết quả cao. Chúc quý thầy, cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) Đề thi tuyển sinh lớp 10 năm học 2017-2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) bao gồm 5 bài toán tự luận với lời giải chi tiết. Dưới đây là một số bài toán trong đề: 1. Trong mặt phẳng tọa độ Oxy, có parabol 2 (P): y = x^2 và đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện |x1 - x2| >= 2. 2. Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2. Đề thi tuyển sinh mang đến những bài toán thú vị, hấp dẫn và đòi hỏi sự tỉ mỉ, logic trong suy luận. Chúc các em thí sinh thành công trong kỳ thi sắp tới!
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Tin)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Tin) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) là bài thi đầy thách thức với nhiều bài toán khó, yêu cầu sự tư duy logic và khả năng suy luận cao. Trong đề thi này, có 5 bài toán tự luận, mỗi bài đều có lời giải chi tiết để giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Một trong những bài toán trong đề thi là bài toán về parabol và đường thẳng, đặt ra các điều kiện và yêu cầu tìm ra các giá trị của các hằng số sao cho tam giác tạo bởi các điểm cắt đường thẳng và parabol có diện tích đã cho. Bài toán này đòi hỏi sự tinh tế trong việc xử lý các định lý và phương pháp tính toán. Bài toán khác đưa ra một định lý về tổ hợp các số nguyên không âm để tổng các tích và tổng các số đó đạt giá trị nhất định. Học sinh cần phải sử dụng đến kiến thức về tổ hợp và tìm ra cách giải phù hợp để hoàn thành bài toán. Ngoài ra, đề thi còn có bài toán về hình vuông và việc chứng minh tồn tại tam giác có diện tích không vượt quá một giá trị nhất định. Để giải quyết bài toán này, học sinh cần phải áp dụng kiến thức về hình học và tư duy logic để đưa ra lời giải chính xác. Đề thi tuyển sinh môn Toán của trường THPT chuyên Quốc học - TT Huế (chuyên Tin) không chỉ đánh giá kiến thức mà còn thách thức sự sáng tạo và tư duy của học sinh. Bằng cách học tập và ôn luyện kỹ càng, học sinh sẽ có cơ hội vượt qua thử thách này và chinh phục bài thi một cách xuất sắc.
Đề thi tuyển sinh vào môn Toán của các trường chuyên, chọn trên toàn quốc
Nội dung Đề thi tuyển sinh vào môn Toán của các trường chuyên, chọn trên toàn quốc Bản PDF - Nội dung bài viết Sách đề thi tuyển sinh vào môn Toán của các trường chuyên từ năm 2000 đến nay Sách đề thi tuyển sinh vào môn Toán của các trường chuyên từ năm 2000 đến nay Sách bao gồm các đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên từ năm 2000 đến nay, với lời giải chi tiết. Đây là tài liệu hữu ích giúp học sinh chuẩn bị cho kỳ thi tuyển sinh vào các trường chuyên trên toàn quốc. Các đề thi được tổng hợp từ nhiều năm, giúp học sinh ôn tập và nắm vững kiến thức, kỹ năng cần thiết để đạt kết quả cao trong kỳ thi quan trọng này. Sách cung cấp một cách tiếp cận cụ thể, dễ hiểu và chi tiết, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Đề thi tuyển sinh THPT công lập năm học 2017 2018 môn Toán sở GD và ĐT Bến Tre
Nội dung Đề thi tuyển sinh THPT công lập năm học 2017 2018 môn Toán sở GD và ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT công lập năm học 2017-2018 môn Toán sở GD và ĐT Bến Tre Đề thi tuyển sinh THPT công lập năm học 2017-2018 môn Toán sở GD và ĐT Bến Tre Trận đấu sôi động giữa học sinh và bài toán đã bắt đầu. Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre vừa được phát. Hàng loạt bài toán hấp dẫn, đầy thử thách đã được đặt ra. Bài toán đầu tiên yêu cầu giải phương trình \( x^2 - 2(m - 1)x - (2m + 1) = 0 \) với \( m = 2 \). Học sinh cần tìm ra nghiệm của phương trình và làm rõ tính chất của nó với mọi giá trị của \( m \). Với sự khéo léo và kiến thức vững chắc, học sinh sẽ có thể vượt qua thử thách này một cách dễ dàng. Bài toán tiếp theo đưa học sinh vào tế bào của parabol và đường thẳng. Việc vẽ đồ thị của parabol và đường thẳng trên mặt phẳng tọa độ, tìm tọa độ giao điểm của chúng không chỉ đòi hỏi sự kiên nhẫn mà còn sự logic và khả năng suy luận. Đề thi này không chỉ là cơ hội để học sinh thể hiện kiến thức mà còn để họ rèn luyện khả năng tư duy, xử lý vấn đề và tự tin trước những thách thức. Mỗi bài toán là một cửa sổ mở ra thế giới kiến thức, chờ đợi những trí tuệ sáng tạo và nhiệt huyết của các bạn trẻ.